Yonghao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidic DNA amplification—A review. Analytica Chimica Acta, 2009, 638, 115-125.	2.6	283
2	Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics, 2009, 106, .	1.1	154
3	Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011, 23, .	1.6	153
4	Lattice Boltzmann simulation of rarefied gas flows in microchannels. Physical Review E, 2005, 71, 047702.	0.8	140
5	A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Analytica Chimica Acta, 2016, 914, 7-16.	2.6	129
6	Capturing Knudsen layer phenomena using a lattice Boltzmann model. Physical Review E, 2006, 74, 046704.	0.8	127
7	Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network. Physics of Fluids, 2015, 27, .	1.6	127
8	Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. Journal of Computational Physics, 2013, 250, 27-52.	1.9	115
9	Phase-field modeling droplet dynamics with soluble surfactants. Journal of Computational Physics, 2010, 229, 9166-9187.	1.9	109
10	Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Physical Review E, 2013, 87, 013010.	0.8	93
11	Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel. Journal of Computational Physics, 2014, 256, 334-356.	1.9	89
12	Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows. Journal of Fluid Mechanics, 2014, 746, 53-84.	1.4	89
13	Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 189, 1-8.	2.6	83
14	A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insolubleÂsurfactants. Journal of Fluid Mechanics, 2018, 837, 381-412.	1.4	81
15	Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92, 033306.	0.8	80
16	Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers. International Journal of Heat and Mass Transfer, 2017, 113, 217-228.	2.5	78
17	Numerical study on the dynamics of a two-raft wave energy conversion device. Journal of Fluids and Structures, 2015, 58, 271-290.	1.5	77
18	Numerical and experimental study of a droplet-based PCR chip. Microfluidics and Nanofluidics, 2007, 3, 611-621.	1.0	76

Yonghao Zhang

#	Article	IF	CITATIONS
19	Modeling and simulation of thermocapillary flows using lattice Boltzmann method. Journal of Computational Physics, 2012, 231, 4433-4453.	1.9	74
20	Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows. Journal of Computational Physics, 2011, 230, 835-849.	1.9	73
21	A comparative study of discrete velocity methods for low-speed rarefied gas flows. Computers and Fluids, 2018, 161, 33-46.	1.3	70
22	Modeling of Knudsen Layer Effects in Micro/Nanoscale Gas Flows. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	69
23	Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. Journal of Fluid Mechanics, 2013, 718, 347-370.	1.4	68
24	On the apparent permeability of porous media in rarefied gas flows. Journal of Fluid Mechanics, 2017, 822, 398-417.	1.4	68
25	Gas Flow in Microchannels – A Lattice Boltzmann Method Approach. Journal of Statistical Physics, 2005, 121, 257-267.	0.5	59
26	A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. Journal of Fluid Mechanics, 2015, 763, 24-50.	1.4	58
27	Pore-scale study of counter-current imbibition in strongly water-wet fractured porous media using lattice Boltzmann method. Physics of Fluids, 2019, 31, .	1.6	58
28	Three-dimensional investigation of recrystallization nucleation in a particle-containing Al alloy. Scripta Materialia, 2012, 67, 320-323.	2.6	57
29	Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows. Europhysics Letters, 2008, 83, 40008.	0.7	56
30	Lattice Boltzmann models for nonequilibrium gas flows. Physical Review E, 2008, 77, 046701.	0.8	53
31	Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows. Physical Review E, 2011, 83, 036704.	0.8	52
32	Molecular free path distribution in rarefied gases. Journal Physics D: Applied Physics, 2011, 44, 125502.	1.3	51
33	Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity. Physical Review E, 2012, 85, 056603.	0.8	50
34	Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations?. Journal of Computational Physics, 2020, 407, 109245.	1.9	50
35	A versatile lattice Boltzmann model for immiscible ternary fluid flows. Physics of Fluids, 2019, 31, 012108.	1.6	48
36	The drag force in two-fluid models of gas–solid flows. Chemical Engineering Science, 2003, 58, 1641-1644.	1.9	46

#	Article	IF	CITATIONS
37	Dynamics of Nanoscale Droplets on Moving Surfaces. Langmuir, 2013, 29, 6936-6943.	1.6	46
38	A fast spectral method for the Boltzmann equation for monatomic gas mixtures. Journal of Computational Physics, 2015, 298, 602-621.	1.9	46
39	Non-equilibrium dynamics of dense gas under tight confinement. Journal of Fluid Mechanics, 2016, 794, 252-266.	1.4	45
40	A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio. Journal of Computational Physics, 2016, 327, 873-893.	1.9	44
41	Multiscale lattice Boltzmann approach to modeling gas flows. Physical Review E, 2011, 83, 046701.	0.8	43
42	Gas turbulence modulation in a two-fluid model for gas–solid flows. AICHE Journal, 2003, 49, 3048-3065.	1.8	41
43	Modelling thermocapillary migration of a microfluidic droplet on a solid surface. Journal of Computational Physics, 2015, 280, 37-53.	1.9	41
44	Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chemical Engineering Journal, 2017, 315, 335-344.	6.6	40
45	Particle–gas turbulence interactions in a kinetic theory approach to granular flows. International Journal of Multiphase Flow, 2001, 27, 1945-1964.	1.6	39
46	Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming–collision mechanism. Journal of Computational Physics, 2014, 258, 601-612.	1.9	38
47	Intrinsic and apparent gas permeability of heterogeneous and anisotropic ultra-tight porous media. Journal of Natural Gas Science and Engineering, 2018, 60, 271-283.	2.1	38
48	Droplet dynamics in confinement. Journal of Computational Science, 2016, 17, 463-474.	1.5	37
49	A multi-level parallel solver for rarefied gas flows in porous media. Computer Physics Communications, 2019, 234, 14-25.	3.0	37
50	An analysis of induced pressure fields in electroosmotic flows through microchannels. Journal of Colloid and Interface Science, 2004, 275, 670-678.	5.0	36
51	A fast iterative scheme for the linearized Boltzmann equation. Journal of Computational Physics, 2017, 338, 431-451.	1.9	35
52	Oscillatory rarefied gas flow inside rectangular cavities. Journal of Fluid Mechanics, 2014, 748, 350-367.	1.4	34
53	Fast spectral solution of the generalized Enskog equation for dense gases. Journal of Computational Physics, 2015, 303, 66-79.	1.9	33
54	Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine using a tubular porous electrode electrocatalytic reactor. Electrochimica Acta, 2016, 220, 211-221.	2.6	33

#	Article	IF	CITATIONS
55	Lattice Boltzmann Simulation of Droplet Generation in a Microfluidic Cross-Junction. Communications in Computational Physics, 2011, 9, 1235-1256.	0.7	32
56	Modelling thermal flow in the transition regime using a lattice Boltzmann approach. Europhysics Letters, 2007, 77, 30003.	0.7	31
57	Dense gas flow simulations in ultra-tight confinement. Physics of Fluids, 2020, 32, .	1.6	31
58	Assessment of the ellipsoidal-statistical Bhatnagar–Gross–Krook model for force-driven Poiseuille flows. Journal of Computational Physics, 2013, 251, 383-395.	1.9	30
59	Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation. Physics of Fluids, 2015, 27, .	1.6	29
60	Rarefaction throttling effect: Influence of the bend in micro-channel gaseous flow. Physics of Fluids, 2018, 30, .	1.6	28
61	Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Physical Review E, 2008, 78, 026706.	0.8	25
62	The effect of Knudsen layers on rarefied cylindrical Couette gas flows. Microfluidics and Nanofluidics, 2013, 14, 31-43.	1.0	25
63	Effects of curvature on rarefied gas flows between rotating concentric cylinders. Physics of Fluids, 2013, 25, .	1.6	24
64	Pore-scale simulations of rarefied gas flows in ultra-tight porous media. Fuel, 2019, 249, 341-351.	3.4	24
65	TBHP/TEMPOâ€Mediated Oxidative Synthesis of Imides from Amides. Chinese Journal of Chemistry, 2015, 33, 531-534.	2.6	23
66	Membrane Separation Coupled with Electrochemical Advanced Oxidation Processes for Organic Wastewater Treatment: A Short Review. Membranes, 2020, 10, 337.	1.4	23
67	Shale gas permeability upscaling from the pore-scale. Physics of Fluids, 2020, 32, .	1.6	23
68	Breakdown parameter for kinetic modeling of multiscale gas flows. Physical Review E, 2014, 89, 063305.	0.8	22
69	Multiscale simulation of molecular gas flows by the general synthetic iterative scheme. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113548.	3.4	22
70	Numerical study of the particle sedimentation in a viscous fluid using a coupled DEM-IB-CLBM approach. Journal of Computational Physics, 2018, 368, 1-20.	1.9	21
71	Copper atalyzed Synthesis of Imides from Aldehydes or Alcohols and Amine Hydrochloride Salts. European Journal of Organic Chemistry, 2015, 2015, 1824-1828.	1.2	19
72	Comparative study of the Boltzmann and McCormack equations for Couette and Fourier flows of binary gaseous mixtures. International Journal of Heat and Mass Transfer, 2016, 96, 29-41.	2.5	19

#	Article	IF	CITATIONS
73	GSIS: An efficient and accurate numerical method to obtain the apparent gas permeability of porous media. Computers and Fluids, 2020, 206, 104576.	1.3	19
74	Oscillatory rarefied gas flow inside a three dimensional rectangular cavity. Physics of Fluids, 2018, 30, .	1.6	18
75	A comparative study of the DSBGK and DVM methods for low-speed rarefied gas flows. Computers and Fluids, 2019, 181, 143-159.	1.3	18
76	Rarefied flow separation in microchannel with bends. Journal of Fluid Mechanics, 2020, 901, .	1.4	18
77	Particle Separation in Microfluidic Devices 3/4 SPLITT Fractionation and Microfluidics. Current Analytical Chemistry, 2005, 1, 345-354.	0.6	17
78	Simulation of thermal transpiration flow using a high-order moment method. International Journal of Modern Physics C, 2014, 25, 1450061.	0.8	17
79	A facile-operation tubular electro-Fenton system combined with oxygen evolution reaction for flutriafol degradation: Modeling and Parameters optimizing. Electrochimica Acta, 2017, 246, 1200-1209.	2.6	17
80	A multi-physics peridynamics-DEM-IB-CLBM framework for the prediction of erosive impact of solid particles in viscous fluids. Computer Methods in Applied Mechanics and Engineering, 2019, 352, 675-690.	3.4	17
81	Implicit Discontinuous Galerkin Method for the Boltzmann Equation. Journal of Scientific Computing, 2020, 82, 1.	1.1	17
82	Simulation of incompressible viscous flows around moving objects by a variant of immersed boundaryâ€lattice Boltzmann method. International Journal for Numerical Methods in Fluids, 2010, 62, 327-354.	0.9	16
83	Simulating Fluid Flows in Micro and Nano Devices: The Challenge of Non-Equilibrium Behaviour. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2061-2074.	0.4	16
84	Pesticide tailwater deeply treated by tubular porous electrode reactor (TPER): Purpose for discharging and cost saving. Chemosphere, 2017, 185, 86-93.	4.2	16
85	Heat and mass transfer of oscillatory lid-driven cavity flow in the continuum, transition and free molecular flow regimes. International Journal of Heat and Mass Transfer, 2019, 131, 291-300.	2.5	16
86	General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows. Journal of Computational Physics, 2021, 430, 110091.	1.9	16
87	A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics. Physics of Fluids, 2021, 33, .	1.6	16
88	Investigation of pressure-driven gas flows in nanoscale channels using molecular dynamics simulation. Microfluidics and Nanofluidics, 2015, 18, 1075-1084.	1.0	15
89	NH ₄ I atalyzed Synthesis of Sulfonamides from Arylsufonylhydrazides and Amines. Chinese Journal of Chemistry, 2016, 34, 359-362.	2.6	15
90	Nonlinear oscillatory rarefied gas flow inside a rectangular cavity. Physical Review E, 2018, 97, 043103.	0.8	15

#	Article	IF	CITATIONS
91	A hybrid approach to couple the discrete velocity method and Method of Moments for rarefied gas flows. Journal of Computational Physics, 2020, 410, 109397.	1.9	15
92	On the unintentional rarefaction effect in LBM modeling of intrinsic permeability. Advances in Geo-Energy Research, 2018, 2, 404-409.	3.1	15
93	Rarefaction cloaking: Influence of the fractal rough surface in gas slider bearings. Physics of Fluids, 2017, 29, 102003.	1.6	14
94	Ab initio calculation of rarefied flows of helium-neon mixture: Classical vs quantum scatterings. International Journal of Heat and Mass Transfer, 2019, 145, 118765.	2.5	14
95	Lattice Boltzmann Simulation of Immiscible Two-Phase Displacement in Two-Dimensional Berea Sandstone. Applied Sciences (Switzerland), 2018, 8, 1497.	1.3	13
96	A high-order hybridizable discontinuous Galerkin method with fast convergence to steady-state solutions of the gas kinetic equation. Journal of Computational Physics, 2019, 376, 973-991.	1.9	13
97	A relaxed multi-direct-forcing immersed boundary-cascaded lattice Boltzmann method accelerated on GPU. Computer Physics Communications, 2020, 248, 106980.	3.0	13
98	Self-diffusivity of dense confined fluids. Physics of Fluids, 2021, 33, .	1.6	13
99	Pore-scale gas flow simulations by the DSBGK and DVM methods. Computers and Fluids, 2021, 226, 105017.	1.3	12
100	Lattice Boltzmann model for thermal transpiration. Physical Review E, 2009, 79, 027701.	0.8	11
101	Color-gradient lattice Boltzmann modeling of immiscible two-phase flows on partially wetting surfaces. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 416-430.	1.1	11
102	Kinetic modelling of the quantum gases in the normal phase. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1799-1823.	1.0	10
103	Applicability of the Boltzmann equation for a two-dimensional Fermi gas. Physical Review A, 2012, 85, .	1.0	10
104	Lattice Boltzmann Simulations of Thermocapillary Motion of Droplets in Microfluidic Channels. Communications in Computational Physics, 2015, 17, 1113-1126.	0.7	10
105	A comparative study of boundary conditions for lattice Boltzmann simulations of high Reynolds number flows. Computers and Fluids, 2017, 156, 1-8.	1.3	10
106	The kinetic Shakhov–Enskog model for non-equilibrium flow of dense gases. Journal of Fluid Mechanics, 2020, 883, .	1.4	10
107	Discrete unified gas kinetic scheme for all Knudsen number flows. IV. Strongly inhomogeneous fluids. Physical Review E, 2020, 101, 043303.	0.8	10
108	Temperature jump and Knudsen layer in rarefied molecular gas. Physics of Fluids, 2022, 34, .	1.6	10

#	Article	IF	CITATIONS
109	Lattice Boltzmann simulation of the trapping of a microdroplet in a well of surface energy. Computers and Fluids, 2017, 155, 68-75.	1.3	9
110	KNUDSEN'S PERMEABILITY CORRECTION FOR GAS FLOW IN TIGHT POROUS MEDIA USING THE R26 MOMENT METHOD. Journal of Porous Media, 2017, 20, 787-805.	1.0	9
111	Do thermal effects cause the propulsion of bulk graphene material?. Nature Photonics, 2016, 10, 139-139.	15.6	8
112	GPU acceleration of an iterative scheme for gas-kinetic model equations with memory reduction techniques. Computer Physics Communications, 2019, 245, 106861.	3.0	8
113	Molecular kinetic modelling of nanoscale slip flow using a continuum approach. Journal of Fluid Mechanics, 2022, 939, .	1.4	8
114	Numerical Simulation of Rarefied Gas Flows with Specified Heat Flux Boundary Conditions. Communications in Computational Physics, 2015, 17, 1185-1200.	0.7	7
115	Virtual-Wall Model for Molecular Dynamics Simulation. Molecules, 2016, 21, 1678.	1.7	7
116	Temperature retrieval error in Rayleigh-Brillouin scattering using Tenti's S6 kinetic model. AIP Conference Proceedings, 2016, , .	0.3	7
117	Droplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Conï¬nement. Micromachines, 2017, 8, 57.	1.4	7
118	Strongly coupled peridynamic and lattice Boltzmann models using immersed boundary method for flow-induced structural deformation and fracture. Journal of Computational Physics, 2021, 435, 110267.	1.9	7
119	Lees-Edwards boundary conditions for the multi-sphere discrete element method. Powder Technology, 2021, 389, 292-308.	2.1	7
120	STUDY OF THE PHASE TRANSFORMATION FROM (Fe, Mn)Al6 TO α-Al12(Fe, Mn)3Si IN AA3104 ALUMINUM ALLO DURING HOMOGENIZATION. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 351.	Ү _{0.3}	7
121	The influence of the drag force due to the interstitial gas on granular flows down a chute. International Journal of Multiphase Flow, 2000, 26, 2049-2072.	1.6	6
122	Thermal transpiration of nanoscale gas flow. AIP Conference Proceedings, 2012, , .	0.3	6
123	Computational methods for pore-scale simulation of rarefied gas flow. Computers and Fluids, 2021, 222, 104932.	1.3	6
124	Continuum Modelling of Granular Particle Flow with Inelastic Inter-Particle Collisions. Chemical Engineering Research and Design, 2003, 81, 483-488.	2.7	5
125	General theory for flow optimisation of split-flow thin fractionation. Journal of Chromatography A, 2003, 1010, 87-94.	1.8	5
126	Numerical investigation of the radial quadrupole and scissors modes in trapped gases. Europhysics Letters, 2012, 97, 16003.	0.7	5

Yonghao Zhang

#	Article	IF	CITATIONS
127	Coherent Rayleigh-Brillouin scattering: Influence of the intermolecular potential. , 2014, , .		5
128	The lattice Boltzmann method and its applications in complex flows and fluid–structure interactions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 403-404.	1.1	5
129	Effect of flow development region and fringing magnetic force field on annular split-flow thin fractionation. Journal of Chromatography A, 2004, 1042, 137-145.	1.8	4
130	A lattice Boltzmann study of the effect of stirring on the migration rate of a curved interface in binary slurries. Computers and Fluids, 2006, 35, 929-933.	1.3	4
131	Velocity Inversion In Cylindrical Couette Gas Flows. Journal of Physics: Conference Series, 2012, 362, 012009.	0.3	4
132	Analytical solution of axi-symmetrical lattice Boltzmann model for cylindrical Couette flows. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 8-14.	1.2	4
133	Modelling Thermally Induced Non-Equilibrium Gas Flows by Coupling Kinetic and Extended Thermodynamic Methods. Entropy, 2019, 21, 816.	1.1	4
134	Isothermal micro-channel gas flow using a hydrodynamic model with dissipative mass flux. , 2011, , .		3
135	Behaviour of microscale gas flows based on a power-law free path distribution function. , 2011, , .		3
136	Molecular dynamics simulations of high speed rarefied gas flows. AIP Conference Proceedings, 2012, , .	0.3	3
137	Variance-reduction kinetic simulation of low-speed rarefied gas flow through long microchannels of annular cross sections. Physics of Fluids, 2020, 32, 082002.	1.6	3
138	Advances in micro/nano fluid flows: In Memory of Professor Jason Reese. Physics of Fluids, 2021, 33, .	1.6	3
139	The Importance of Mean Free Path in Determining Gas Micro Flow Behaviour. , 2010, , .		2
140	Rarefaction effects in gas flows over curved surfaces. AIP Conference Proceedings, 2012, , .	0.3	2
141	High-order hybridisable discontinuous Galerkin method for the gas kinetic equation. International Journal of Computational Fluid Dynamics, 2019, 33, 335-342.	0.5	2
142	Analytical Solution for the Lattice Boltzmann Model Beyond Naviers-Stokes. Advances in Applied Mathematics and Mechanics, 2010, 2, 670-676.	0.7	2
143	Computable model on the collision integral of Boltzmann equation and application to rarefied aerodynamics. Scientia Sinica: Physica, Mechanica Et Astronomica, 2017, 47, 070004.	0.2	2
144	A kinetic switching criterion for hybrid modelling of multiscale gas flows. Journal of Physics: Conference Series, 2012, 362, 012006.	0.3	1

#	Article	IF	CITATIONS
145	Pore-Scale Study of Rarefied Gas Flows Using Low-Variance Deviational Simulation Monte Carlo Method. Transport in Porous Media, 2021, 138, 25-48.	1.2	1
146	INFLUENCE OF THE ELECTRIC DOUBLE LAYER ON INDUCED PRESSURE FIELDS AND DEVELOPMENT LENGTHS IN ELECTRO-OSMOTIC FLOWS. Modern Physics Letters B, 2005, 19, 1655-1658.	1.0	0
147	Pulsating Electroosmotic Flow and Wall Block Mixing in Microchannels. , 2008, , .		0
148	A Thermal Lattice Boltzmann Model for Micro/Nano-Flows. , 2008, , .		0
149	MODELING VISCOUS FLUID DAMPING IN OSCILLATING MICROSTRUCTURES. Modern Physics Letters B, 2009, 23, 241-244.	1.0	0
150	Lattice Boltzmann simulation of droplet behaviour in microfluidic devices. Houille Blanche, 2009, 95, 84-92.	0.3	0
151	Dynamic Wetting on Moving Surfaces: A Molecular Dynamics Study. , 2012, , .		0
152	The Macro Regulation and Control of Financial Policy under the Currency Mismatch Condition. , 2012, , .		0
153	Physics of Multiphase Microflows and Microdroplets. , 2012, , 1-21.		0
154	A high order off-lattice kinetic method for high speed flows with a moderate Knudsen number. AIP Conference Proceedings, 2019, , .	0.3	0
155	Comparative study of the discrete velocity and the moment method for rarefied gas flows. AIP Conference Proceedings, 2019, , .	0.3	0
156	Advanced Aerodynamic Modelling for the Optimization of Aircraft Wing Performance via Aeroelastic Tailoring. , 2019, , .		0
157	Multiphase Lattice Boltzmann simulations of droplets in Microchannel networks. Houille Blanche, 2013, , 5-11.	0.3	0