Xin Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/272206/publications.pdf

Version: 2024-02-01

147566 189595 2,772 68 31 50 citations h-index g-index papers 69 69 69 4269 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A Largeâ€scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology, 2018, 67, 662-675.	3.6	268
2	LC–MS-based metabonomics analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 866, 64-76.	1.2	168
3	Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Molecular and Cellular Proteomics, 2016, 15, 154-163.	2.5	149
4	Multiple Reaction Monitoring-Ion Pair Finder: A Systematic Approach To Transform Nontargeted Mode to Pseudotargeted Mode for Metabolomics Study Based on Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2015, 87, 5050-5055.	3.2	119
5	Analysis of Cigarette Smoke Condensates by Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass Spectrometry I Acidic Fraction. Analytical Chemistry, 2003, 75, 4441-4451.	3.2	108
6	Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Scientific Reports, 2016, 6, 20984.	1.6	103
7	Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Scientific Reports, 2016, 6, 37976.	1.6	93
8	Comprehensive Strategy to Construct In-House Database for Accurate and Batch Identification of Small Molecular Metabolites. Analytical Chemistry, 2018, 90, 7635-7643.	3.2	90
9	A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in Molecular Biosciences, 2015, 2, 4.	1.6	78
10	Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metabolomics, 2008, 4, 183-189.	1.4	76
11	A metabolomics study delineating geographical location-associated primary metabolic changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Scientific Reports, 2015, 5, 16346.	1.6	74
12	Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics, 2009, 5, 497-506.	1.4	73
13	Oral secretions from <i>Mythimna separata</i> insects specifically induce defence responses in maize as revealed by highâ€dimensional biological data. Plant, Cell and Environment, 2016, 39, 1749-1766.	2.8	61
14	Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. International Journal of Cancer, 2018, 143, 396-407.	2.3	57
15	Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation. Journal of Proteome Research, 2019, 18, 960-969.	1.8	56
16	Discovery and validation of potential urinary biomarkers for bladder cancer diagnosis using a pseudotargeted GC-MS metabolomics method. Oncotarget, 2017, 8, 20719-20728.	0.8	55
17	Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry and Its In Silico Database. Analytical Chemistry, 2018, 90, 14321-14330.	3.2	54
18	The development of plasma pseudotargeted GC-MS metabolic profiling and its application in bladder cancer. Analytical and Bioanalytical Chemistry, 2016, 408, 6741-6749.	1.9	50

#	Article	IF	Citations
19	Optimization of large-scale pseudotargeted metabolomics method based on liquid chromatography–mass spectrometry. Journal of Chromatography A, 2016, 1437, 127-136.	1.8	44
20	Characterization of cigarette smoke condensates by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC/TOFMS) Part 2: Basic fraction. Journal of Separation Science, 2004, 27, 101-109.	1.3	42
21	Strategy for Comprehensive Identification of Acylcarnitines Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry, 2018, 90, 5712-5718.	3.2	42
22	Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography. Journal of Chromatography A, 2014, 1330, 40-50.	1.8	41
23	Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography. Journal of Chromatography A, 2015, 1396, 62-71.	1.8	41
24	Nontargeted Screening Method for Illegal Additives Based on Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry, 2016, 88, 8870-8877.	3.2	41
25	Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples. Journal of Chromatography A, 2018, 1560, 19-25.	1.8	41
26	Serum Metabolomics Study of Nonsmoking Female Patients with Non-Small Cell Lung Cancer Using Gas Chromatography–Mass Spectrometry. Journal of Proteome Research, 2019, 18, 2175-2184.	1.8	38
27	Characterization of complex hydrocarbons in cigarette smoke condensate by gas chromatography–mass spectrometry and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A, 2004, 1043, 265-273.	1.8	35
28	A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Scientific Reports, 2015, 5, 8984.	1.6	35
29	High-sensitivity detection of biogenic amines with multiple reaction monitoring in fish based on benzoyl chloride derivatization. Journal of Chromatography A, 2016, 1465, 30-37.	1.8	33
30	Ion-Pair Selection Method for Pseudotargeted Metabolomics Based on SWATH MS Acquisition and Its Application in Differential Metabolite Discovery of Type 2 Diabetes. Analytical Chemistry, 2018, 90, 11401-11408.	3.2	33
31	Comprehensive two-dimensional chromatography for analyzing complex samples: recent new advances. Analytical Methods, 2014, 6, 7112-7123.	1.3	32
32	Metabolic Profiling with Gas Chromatography–Mass Spectrometry and Capillary Electrophoresis–Mass Spectrometry Reveals the Carbon–Nitrogen Status of Tobacco Leaves Across Different Planting Areas. Journal of Proteome Research, 2016, 15, 468-476.	1.8	32
33	Identification of unknown compounds on the basis of retention index data in comprehensive two-dimensional gas chromatography. Journal of Separation Science, 2007, 30, 868-874.	1.3	31
34	Metabolic profiling study of early and late recurrence of hepatocellular carcinoma based on liquid chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 966, 163-170.	1.2	30
35	A Novel Strategy for Large-Scale Metabolomics Study by Calibrating Gross and Systematic Errors in Gas Chromatography–Mass Spectrometry. Analytical Chemistry, 2016, 88, 2234-2242.	3.2	28
36	Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics, 2014, 10, 805-815.	1.4	27

#	Article	IF	CITATIONS
37	Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Analytical and Bioanalytical Chemistry, 2018, 410, 839-851.	1.9	25
38	Resolution prediction and optimization of temperature programme in comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2005, 1086, 175-184.	1.8	24
39	A simultaneous extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf treated with insecticide based on LC–MS analysis. Metabolomics, 2014, 10, 1197-1209.	1.4	24
40	Screening and Determination of Potential Risk Substances Based on Liquid Chromatography–High-Resolution Mass Spectrometry. Analytical Chemistry, 2018, 90, 8454-8461.	3.2	23
41	Serum Metabolomics for Biomarker Screening of Esophageal Squamous Cell Carcinoma and Esophageal Squamous Dysplasia Using Gas Chromatography-Mass Spectrometry. ACS Omega, 2020, 5, 26402-26412.	1.6	21
42	Integrating transcriptome and metabolome reveals molecular networks involved in genetic and environmental variation in tobacco. DNA Research, 2020, 27, .	1,5	21
43	An alignment algorithm for LC-MS-based metabolomics dataset assisted by MS/MS information. Analytica Chimica Acta, 2017, 990, 96-102.	2.6	17
44	Serum Metabolomics Study of Gliclazide-Modified-Release-Treated Type 2 Diabetes Mellitus Patients Using a Gas Chromatography–Mass Spectrometry Method. Journal of Proteome Research, 2018, 17, 1575-1585.	1.8	17
45	Metabolic responses of rice leaves and seeds under transgenic backcross breeding and pesticide stress by pseudotargeted metabolomics. Metabolomics, 2015, 11, 1802-1814.	1.4	16
46	Quality evaluation of volatile oils of Traditional Chinese Medicines by using comprehensive two-dimensional gas chromatography (GC×GC). Chromatographia, 2003, 57, S265-S270.	0.7	15
47	Plasma metabolomics profiling of maintenance hemodialysis based on capillary electrophoresis - time of flight mass spectrometry. Scientific Reports, 2017, 7, 8150.	1.6	15
48	Nontargeted screening method for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Food Chemistry, 2022, 369, 130928.	4.2	15
49	Metabolic profiling of transgenic rice progeny using gas chromatography–mass spectrometry: the effects of gene insertion, tissue culture and breeding. Metabolomics, 2012, 8, 529-539.	1.4	14
50	Quantitative structure-retention relationships model for retention time prediction of veterinary drugs in food matrixes. International Journal of Mass Spectrometry, 2018, 434, 172-178.	0.7	14
51	Synthesis of metal-organic framework-5@chitosan material for the analysis of microcystins and nodularin based on ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2020, 1623, 461198.	1.8	13
52	Liquid Chromatography–Mass Spectrometry-Based Nontargeted Metabolomics Predicts Prognosis of Hepatocellular Carcinoma after Curative Resection. Journal of Proteome Research, 2020, 19, 3533-3541.	1.8	13
53	Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules. Analytical Chemistry, 2021, 93, 15651-15658.	3.2	13
54	Removal of false positive features to generate authentic peak table for high-resolution mass spectrometry-based metabolomics study. Analytica Chimica Acta, 2019, 1067, 79-87.	2.6	12

#	Article	IF	CITATIONS
55	Strategy for Nontargeted Metabolomic Annotation and Quantitation Using a High-Resolution Spectral-Stitching Nanoelectrospray Direct-Infusion Mass Spectrometry with Data-Independent Acquisition. Analytical Chemistry, 2021, 93, 10528-10537.	3.2	12
56	Sampleâ€directed pseudotargeted method for the metabolic profiling analysis of rice seeds based on liquid chromatography with mass spectrometry. Journal of Separation Science, 2016, 39, 247-255.	1.3	10
57	MetEx: A Targeted Extraction Strategy for Improving the Coverage and Accuracy of Metabolite Annotation in Liquid Chromatography–High-Resolution Mass Spectrometry Data. Analytical Chemistry, 2022, 94, 8561-8569.	3.2	10
58	Metabolomics insights into the prenatal exposure effects of polybrominated diphenyl ethers on neonatal birth outcomes. Science of the Total Environment, 2022, 836, 155601.	3.9	9
59	Application of L-EDA in metabonomics data handling: global metabolite profiling and potential biomarker discovery of epithelial ovarian cancer prognosis. Metabolomics, 2011, 7, 614-622.	1.4	7
60	A rapid GC method coupled with quadrupole or time of flight mass spectrometry for metabolomics analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122355.	1.2	7
61	A graph density-based strategy for features fusion from different peak extract software to achieve more metabolites in metabolic profiling from high-resolution mass spectrometry. Analytica Chimica Acta, 2020, 1139, 8-14.	2.6	5
62	Metabolite Triplet in Serum Improves the Diagnostic Accuracy of Prediabetes and Diabetes Screening. Journal of Proteome Research, 2021, 20, 1005-1014.	1.8	5
63	Development of a novel analytical method for inflammation and immunity-related metabolites in serum based on liquid chromatography tandem mass spectrometry. Talanta, 2021, 234, 122631.	2.9	5
64	Highâ€throughput metabolic profiling based on small amount of hepatic cells. Electrophoresis, 2017, 38, 2296-2303.	1.3	3
65	Novel Stable Isotope-Resolved Metabolomics Method for a Small Number of Cells Using Chip-Based Nanoelectrospray Mass Spectrometry. Analytical Chemistry, 2021, 93, 13765-13773.	3.2	3
66	A data processing pipeline for petroleomics based on liquid chromatography-high resolution mass spectrometry. Journal of Chromatography A, 2022, 1673, 463194.	1.8	3
67	Protein profiling analysis based on matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry and its application in typing Streptomyces isolates. Talanta, 2020, 208, 120439.	2.9	1
68	Nontargeted screening of veterinary drugs and their metabolites in milk based on mass defect filtering using liquid chromatography–highâ€resolution mass spectrometry. Electrophoresis, 2022, 43, 1822-1831.	1.3	1