Guoping Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722039/publications.pdf

Version: 2024-02-01

257450 243625 2,350 55 24 citations h-index papers

g-index 57 57 57 3455 docs citations times ranked citing authors all docs

44

#	Article	IF	Citations
1	Low-temperature curable and low-dielectric polyimide nanocomposites using aminoquinoline-functionalized graphene oxide Nanosheets. Composites Part B: Engineering, 2022, 228, 109412.	12.0	29
2	Adhesion and Interface Studies of the Structureâ€Controlled Polyimide with Smooth Copper for Highâ€Frequency Communication. Advanced Materials Interfaces, 2022, 9, 2101745.	3.7	6
3	Organosoluble thermoplastic polyimide with improved thermal stability and UV absorption for temporary bonding and debonding in ultra-thin chip package. Polymer, 2022, 244, 124660.	3.8	14
4	Fluorinated graphene/polyimide nanocomposites for advanced electronic packaging applications. Journal of Applied Polymer Science, 2021, 138, 49801.	2.6	15
5	Low temperature curing polyimides with covalent-boned 5-aminobenzimidazole. Polymer, 2021, 218, 123514.	3.8	19
6	Stretchable and self-healable polyelectrolytes for flexible and sustainable supercapacitor. Journal of Power Sources, 2021, 487, 229394.	7.8	18
7	Low temperature curable polyimides for advanced package application. , 2021, , .		O
8	Low CTE Polyimide for Advanced Package Application. , 2021, , .		1
9	A comprehensive study of pyrazine-contained and low-temperature curable polyimide. Polymer, 2021, 228, 123963.	3.8	23
10	Natively stretchable micro-supercapacitors based on a PEDOT:PSS hydrogel. Journal of Materials Chemistry C, 2021, 9, 1685-1692.	5.5	23
11	Properties of room temperature bonded and UV cured temporary bonding adhesive for ultra-thin wafer's handling. , 2021, , .		0
12	Novel water-soluble protective adhesive for wafer's laser dicing. , 2021, , .		0
13	Tuning the Curing Temperature of Polyimide Precursor: Ploy Amide Ester. , 2021, , .		1
14	Low Temperature Curing Copolyimide with Monomer Containing Pyrazine Moiety., 2021,,.		0
15	Novel Low-dielectric Fluorinated Carbon Fiber/Polyimide Materials with High Elongation. , 2021, , .		1
16	Synthesis and properties study of a thermoplastic polyimide with high glass transition temperature for wafer level package. , 2021 , , .		0
17	A synergistic self-assembled 3D PEDOT:PSS/graphene composite sponge for stretchable microsupercapacitors. Journal of Materials Chemistry A, 2020, 8, 554-564.	10.3	72
18	Comprehensive properties study of low-temperature imidized polyimide with curing accelerators. Journal of Materials Chemistry C, 2020, 8, 14886-14894.	5.5	22

#	Article	IF	CITATIONS
19	Ladderlike Conical Micropillars Facilitating Underwater Gas-Bubble Manipulation in an Aqueous Environment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42437-42445.	8.0	15
20	Low temperature microwave fabrication of three-dimensional graphene/polyimide foams with flexibility strain responsivity. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105995.	7.6	24
21	Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds. Polymer, 2019, 184, 121882.	3.8	34
22	Lowâ€Dielectric Constant and Lowâ€Temperature Curable Polyimide/POSS Nanocomposites. Macromolecular Materials and Engineering, 2019, 304, 1900505.	3.6	45
23	Selfâ€Healable Polyelectrolytes with Mechanical Enhancement for Flexible and Durable Supercapacitors. Chemistry - A European Journal, 2019, 25, 11715-11724.	3.3	23
24	Nacre-inspired highly stretchable piezoresistive Cuâ€"Ag nanowire/graphene synergistic conductive networks for strain sensors and beyond. Journal of Materials Chemistry C, 2019, 7, 7061-7072.	5.5	24
25	Highly Ordered 3D Porous Graphene Sponge for Wearable Piezoresistive Pressure Sensor Applications. Chemistry - A European Journal, 2019, 25, 6378-6384.	3.3	39
26	UV-triggered self-healing polyurethane with enhanced stretchability and elasticity. Polymer, 2019, 172, 187-195.	3.8	61
27	Biomimetic, recyclable, highly stretchable and self-healing conductors enabled by dual reversible bonds. Chemical Engineering Journal, 2019, 371, 203-212.	12.7	53
28	Effects of quinoline on the imidization temperature and properties of polyimide. Materials Research Express, 2019, 6, 125358.	1.6	5
29	Dielectric self-healing BNNS/PU nanocomposites based on DA chemistry. , 2019, , .		0
30	Intrinsic low dielectric constant and low dielectric loss polyimides: the effect of molecular structure. , 2019, , .		2
31	Highly sensitive strain sensors based on hollow packaged silver nanoparticle-decorated three-dimensional graphene foams for wearable electronics. RSC Advances, 2019, 9, 39958-39964.	3.6	6
32	Heatâ€triggered poly(siloxaneâ€urethane)s based on disulfide bonds for selfâ€healing application. Journal of Applied Polymer Science, 2018, 135, 46532.	2.6	77
33	Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels–Alder Chemistry. ACS Applied Materials & Interfaces, 2018, 10, 9727-9735.	8.0	44
34	Selfâ∈Healable and Mechanically Reinforced Multidimensionalâ∈€arbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800369.	2.2	17
35	Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. Small, 2018, 14, e1800047.	10.0	83
36	An Omniâ∈Healable and Highly Sensitive Capacitive Pressure Sensor with Microarray Structure. Chemistry - A European Journal, 2018, 24, 16823-16832.	3.3	49

#	Article	IF	Citations
37	Fabrication of a flexible and stretchable three-dimensional conductor based on Au–Ni@graphene coated polyurethane sponge by electroless plating. Journal of Materials Chemistry C, 2018, 6, 8135-8143.	5.5	21
38	Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3040-3049.	8.0	103
39	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12147-12164.	8.0	359
40	Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor. Journal of Power Sources, 2017, 345, 146-155.	7.8	109
41	Fabrication of highly reinforced and compressible graphene/carbon nanotube hybrid foams via a facile self-assembly process for application as strain sensors and beyond. Journal of Materials Chemistry C, 2017, 5, 2723-2730.	5.5	42
42	Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Composites Science and Technology, 2017, 146, 169-176.	7.8	62
43	Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small, 2017, 13, 1700944.	10.0	97
44	A covalently cross-linked reduced functionalized graphene oxide/polyurethane composite based on Dielsâ€"Alder chemistry and its potential application in healable flexible electronics. Journal of Materials Chemistry C, 2017, 5, 220-228.	5.5	72
45	Controllable Synthesis and Study on Morphology of Copper Nanowires. Journal of the Chinese Chemical Society, 2017, 64, 1354-1359.	1.4	3
46	A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. Journal of Materials Chemistry C, 2017, 5, 10167-10175.	5.5	61
47	Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18954-18961.	8.0	176
48	Formation of Polymer Insulation Layer (Liner) on Through Silicon Vias (TSV) with High Aspect Ratio over 5:1 by Direct Spin Coating., 2016,,.		6
49	Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. Journal of Materials Chemistry C, 2016, 4, 6666-6674.	5.5	58
50	Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon, 2015, 86, 225-234.	10.3	59
51	A facile method to prepare highly compressible three-dimensional graphene-only sponge. Journal of Materials Chemistry A, 2015, 3, 15482-15488.	10.3	54
52	Thermally reversible and selfâ€healing novolac epoxy resins based on <scp>Diels</scp> a€" <scp>Alder</scp> chemistry. Journal of Applied Polymer Science, 2015, 132, .	2.6	47
53	Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & Interfaces, 2015, 7, 6716-6723.	8.0	21
54	Facile preparation of folded structured single-walled carbon nanotube hybrid paper: Toward applications as flexible conductor and temperature-driven switch. Carbon, 2015, 95, 987-994.	10.3	18

#	Article	IF	CITATIONS
55	In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. Journal of Materials Chemistry A, 2014, 2, 20642-20649.	10.3	137