Soheila Karimi-Abdolrezaee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721931/publications.pdf

Version: 2024-02-01

46 papers

4,577 citations

186265
28
h-index

206112 48 g-index

48 all docs 48 docs citations

48 times ranked

4674 citing authors

#	Article	IF	Citations
1	Current status of neuroprotective and neuroregenerative strategies in multiple sclerosis: A systematic review. Multiple Sclerosis Journal, 2022, 28, 29-48.	3.0	15
2	Suppressing CSPG/LAR/PTPÏf Axis Facilitates Neuronal Replacement and Synaptogenesis by Human Neural Precursor Grafts and Improves Recovery after Spinal Cord Injury. Journal of Neuroscience, 2022, 42, 3096-3121.	3.6	10
3	Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination. Nature Communications, 2022, 13, 2445.	12.8	22
4	Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain, 2021, 144, 162-185.	7.6	11
5	Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166117.	3.8	17
6	Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. Journal of Neuroscience Research, 2021, 99, 2427-2462.	2.9	31
7	Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Experimental Neurology, 2021, 345, 113817.	4.1	5
8	Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Experimental Neurology, 2020, 325, 113163.	4.1	17
9	Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Experimental Neurology, 2020, 334, 113455.	4.1	18
10	Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Progress in Neurobiology, 2019, 180, 101643.	5.7	74
11	Neuregulin-1 Fosters Supportive Interactions between Microglia and Neural Stem/Progenitor Cells. Stem Cells International, 2019, 2019, 1-20.	2.5	9
12	Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology, 2019, 10, 282.	2.4	698
13	A New Microfluidic Platform for Studying Natural Killer Cell and Dendritic Cell Interactions. Micromachines, 2019, 10, 851.	2.9	5
14	LAR and PTP $\ddot{\text{I}}_f$ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia, 2019, 67, 125-145.	4.9	44
15	Inhibition of VDAC1 Protects Against Glutamate-Induced Oxytosis and Mitochondrial Fragmentation in Hippocampal HT22 Cells. Cellular and Molecular Neurobiology, 2019, 39, 73-85.	3.3	31
16	Neuregulin-1 elicits a regulatory immune response following traumatic spinal cord injury. Journal of Neuroinflammation, 2018, 15, 53.	7.2	46
17	Neuregulin†promotes remyelination and fosters a proâ€regenerative inflammatory response in focal demyelinating lesions of the spinal cord. Glia, 2018, 66, 538-561.	4.9	44
18	Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTP $^{\circ}f$ receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90.	7.2	73

#	Article	IF	Citations
19	Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury. Neural Regeneration Research, 2018, 13, 2080.	3.0	11
20	Neuregulinâ \in 1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia, 2017, 65, 1152-1175.	4.9	54
21	Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. Journal of Controlled Release, 2017, 261, 147-162.	9.9	33
22	Neuregulin-1: a novel regulator of glial response in spinal cord injury. Neural Regeneration Research, 2017, 12, 1616.	3.0	4
23	Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. Journal of Physiology, 2016, 594, 3539-3552.	2.9	71
24	Myelin damage and repair in pathologic CNS: challenges and prospects. Frontiers in Molecular Neuroscience, 2015, 8, 35.	2.9	163
25	Chondroitin Sulfate Proteoglycans Negatively Modulate Spinal Cord Neural Precursor Cells by Signaling Through LAR and RPTP \hat{f}_f and Modulation of the Rho/ROCK Pathway. Stem Cells, 2015, 33, 2550-2563.	3.2	59
26	Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental Neurology, 2015, 269, 169-187.	4.1	137
27	Modulation of the proteoglycan receptor PTPÏf promotes recovery after spinal cord injury. Nature, 2015, 518, 404-408.	27.8	385
28	Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics. PLoS ONE, 2014, 9, e111072.	2.5	51
29	Dysregulation of the neuregulinâ€1– <scp>E</scp> rb <scp>B</scp> network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. European Journal of Neuroscience, 2013, 38, 2693-2715.	2.6	59
30	Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics, 2013, 14, 583.	2.8	64
31	Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury — How much is enough?. Experimental Neurology, 2013, 248, 30-44.	4.1	52
32	Reactive Astrogliosis after Spinal Cord Injury—Beneficial and Detrimental Effects. Molecular Neurobiology, 2012, 46, 251-264.	4.0	285
33	Stem Cells and Spinal Cord Injury Repair. Advances in Experimental Medicine and Biology, 2012, 760, 53-73.	1.6	25
34	Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury. PLoS ONE, 2012, 7, e37589.	2.5	109
35	Kinematic Study of Locomotor Recovery after Spinal Cord Clip Compression Injury in Rats. Journal of Neurotrauma, 2011, 28, 1963-1981.	3.4	58
36	A Systematic Review of Cellular Transplantation Therapies for Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1611-1682.	3.4	490

#	Article	IF	CITATIONS
37	Molecular and electrophysiological evidence for the expression of BK channels in oligodendroglial precursor cells. European Journal of Neuroscience, 2011, 34, 538-547.	2.6	17
38	Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. Journal of Neuroscience, 2010, 30, 1657-1676.	3.6	328
39	Current status of experimental cell replacement approaches to spinal cord injury. Neurosurgical Focus, 2008, 24, E19.	2.3	90
40	Myelination of Congenitally Dysmyelinated Spinal Cord Axons by Adult Neural Precursor Cells Results in Formation of Nodes of Ranvier and Improved Axonal Conduction. Journal of Neuroscience, 2007, 27, 3416-3428.	3.6	104
41	Delayed Transplantation of Adult Neural Precursor Cells Promotes Remyelination and Functional Neurological Recovery after Spinal Cord Injury. Journal of Neuroscience, 2006, 26, 3377-3389.	3.6	549
42	Functional Changes in Genetically Dysmyelinated Spinal Cord Axons of Shiverer Mice: Role of Juxtaparanodal Kv1 Family K+ Channels. Journal of Neurophysiology, 2006, 95, 1683-1695.	1.8	61
43	Structural and functional alterations of spinal cord axons in adult Long Evans Shaker (LES) dysmyelinated rats. Experimental Neurology, 2005, 193, 334-349.	4.1	25
44	Temporal and spatial patterns of $Kv1.1$ and $Kv1.2$ protein and gene expression in spinal cord white matter after acute and chronic spinal cord injury in rats: implications for axonal pathophysiology after neurotrauma. European Journal of Neuroscience, 2004, 19, 577-589.	2.6	84
45	Developmental Down-Regulation of GAP-43 Expression and Timing of Target Contact in Rat Corticospinal Neurons. Experimental Neurology, 2002, 176, 390-401.	4.1	14
46	Retrograde Repression of Growth-Associated Protein-43 mRNA Expression in Rat Cortical Neurons. Journal of Neuroscience, 2002, 22, 1816-1822.	3.6	21