
Larry A Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of an Orally Bioavailable, Brain-Penetrant Compound with Selectivity for the Cannabinoid Type 2 Receptor. Molecules, 2022, 27, 509.	3.8	3
2	Comparative pharmacokinetics and tissue distribution of primaquine enantiomers in mice. Malaria Journal, 2022, 21, 33.	2.3	4
3	Comparative single dose pharmacokinetics and metabolism of racemic primaquine and its enantiomers in human volunteers. Drug Metabolism and Pharmacokinetics, 2022, 45, 100463.	2.2	3
4	First in class (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs as selective CB2 modulators targeting neurodegenerative disorders. Medicinal Chemistry Research, 2021, 30, 98-108.	2.4	10
5	Quantitative determination of primaquine-5,6-ortho-quinone and carboxyprimaquine-5,6-ortho-quinone in human erythrocytes by UHPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1163, 122510.	2.3	7
6	Enantioselective Interactions of Anti-Infective 8-Aminoquinoline Therapeutics with Human Monoamine Oxidases A and B. Pharmaceuticals, 2021, 14, 398.	3.8	4
7	In search for potential antidiabetic compounds from natural sources: docking, synthesis and biological screening of small molecules from Lycium spp. (Goji). Heliyon, 2020, 6, e02782.	3.2	6
8	Safety and Molecular-Toxicological Implications of Cannabidiol-Rich Cannabis Extract and Methylsulfonylmethane Co-Administration. International Journal of Molecular Sciences, 2020, 21, 7808.	4.1	6
9	Content versus Label Claims in Cannabidiol (CBD)-Containing Products Obtained from Commercial Outlets in the State of Mississippi. Journal of Dietary Supplements, 2020, 17, 599-607.	2.6	60
10	Potential Probiotic or Trigger of Gut Inflammation – The Janus-Faced Nature of Cannabidiol-Rich Cannabis Extract. Journal of Dietary Supplements, 2020, 17, 543-560.	2.6	25
11	Cannabidiol (CBD) in Dietary Supplements: Perspectives on Science, Safety, and Potential Regulatory Approaches. Journal of Dietary Supplements, 2020, 17, 493-502.	2.6	23
12	NPC1161B, an 8-Aminoquinoline Analog, Is Metabolized in the Mosquito and Inhibits Plasmodium falciparum Oocyst Maturation. Frontiers in Pharmacology, 2019, 10, 1265.	3.5	10
13	Plasmodium vivax chloroquine resistance links to pvcrt transcription in a genetic cross. Nature Communications, 2019, 10, 4300.	12.8	35
14	Paradoxical Patterns of Sinusoidal Obstruction Syndrome-Like Liver Injury in Aged Female CD-1 Mice Triggered by Cannabidiol-Rich Cannabis Extract and Acetaminophen Co-Administration. Molecules, 2019, 24, 2256.	3.8	19
15	Hepatotoxicity of a Cannabidiol-Rich Cannabis Extract in the Mouse Model. Molecules, 2019, 24, 1694.	3.8	90
16	Formation primaquine-5,6-orthoquinone, the putative active and toxic metabolite of primaquine via direct oxidation in human erythrocytes. Malaria Journal, 2019, 18, 30.	2.3	21
17	Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chemical Science, 2018, 9, 307-314.	7.4	55
18	Metabolism of primaquine in normal human volunteers: investigation of phase I and phase II metabolites from plasma and urine using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Malaria Journal, 2018, 17, 294.	2.3	28

#	Article	IF	CITATIONS
19	Cannabis cultivation: Methodological issues for obtaining medical-grade product. Epilepsy and Behavior, 2017, 70, 302-312.	1.7	106
20	PXR mediated induction of CYP3A4, CYP1A2, and Pâ€gp by <i>Mitragyna speciosa</i> and its alkaloids. Phytotherapy Research, 2017, 31, 1935-1945.	5.8	33
21	Inhibitors of ubiquitin E3 ligase as potential new antimalarial drug leads. BMC Pharmacology & Toxicology, 2017, 18, 40.	2.4	18
22	Modulation of Cytochrome P450, P-glycoprotein and Pregnane X Receptor by Selected Antimalarial Herbs—Implication for Herb-Drug Interaction. Molecules, 2017, 22, 2049.	3.8	17
23	Interactions of Desmethoxyyangonin, a Secondary Metabolite from <i>Renealmia alpinia</i> , with Human Monoamine Oxidase-A and Oxidase-B. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	1.2	7
24	Both Phenolic and Non-phenolic Green Tea Fractions Inhibit Migration of Cancer Cells. Frontiers in Pharmacology, 2016, 7, 398.	3.5	20
25	Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents. Pharmacotherapy, 2016, 36, 781-796.	2.6	110
26	Meroterpenoids with Antiproliferative Activity from a Hawaiian-Plant Associated Fungus <i>Peyronellaea coffeae-arabicae</i> FT238. Organic Letters, 2016, 18, 2335-2338.	4.6	43
27	Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids. Planta Medica, 2016, 82, 551-558.	1.3	12
28	Single-Dose Primaquine in a Preclinical Model of Glucose-6-Phosphate Dehydrogenase Deficiency: Implications for Use in Malaria Transmission-Blocking Programs. Antimicrobial Agents and Chemotherapy, 2016, 60, 5906-5913.	3.2	8
29	Pathway-specific inhibition of primaquine metabolism by chloroquine/quinine. Malaria Journal, 2016, 15, 466.	2.3	19
30	Mechanism for neurotropic action of vorinostat, a pan histone deacetylase inhibitor. Molecular and Cellular Neurosciences, 2016, 77, 11-20.	2.2	11
31	Screening North American plant extracts in vitro against Trypanosoma brucei for discovery of new antitrypanosomal drug leads. BMC Complementary and Alternative Medicine, 2016, 16, 131.	3.7	31
32	Isolation of Acacetin from <i>Calea urticifolia</i> with Inhibitory Properties against Human Monoamine Oxidase-A and -B. Journal of Natural Products, 2016, 79, 2538-2544.	3.0	32
33	Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin. Data in Brief, 2016, 8, 272-279.	1.0	8
34	Methemoglobinemia Hemotoxicity of Some Antimalarial 8-Aminoquinoline Analogues and Their Hydroxylated Derivatives: Density Functional Theory Computation of Ionization Potentials. Chemical Research in Toxicology, 2016, 29, 1132-1141.	3.3	3
35	Differential kinetic profiles and metabolism of primaquine enantiomers by human hepatocytes. Malaria Journal, 2016, 15, 224.	2.3	19
36	Diversity-oriented natural product platform identifies plant constituents targeting Plasmodium falciparum. Malaria Journal, 2016, 15, 270.	2.3	4

#	Article	IF	CITATIONS
37	New ent-Clerodane and Abietane Diterpenoids from the Roots of Kenyan Croton megalocarpoides Friis & M. G. Gilbert. Planta Medica, 2016, 82, 1079-1086.	1.3	17
38	The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 inÂvitro. Archives of Biochemistry and Biophysics, 2016, 591, 98-110.	3.0	52
39	Clinically Relevant Pharmacokinetic Herb-drug Interactions in Antiretroviral Therapy. Current Drug Metabolism, 2015, 17, 52-64.	1.2	27
40	Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine. Medicines (Basel, Switzerland), 2015, 2, 93-105.	1.4	9
41	Anti-Vancomycin-resistant Enterococcus faecium and E. faecalis Activities of (-)-Gossypol and Derivatives from Thespesia garckeana. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
42	Computational Study on the Effect of Exocyclic Substituents on the Ionization Potential of Primaquine: Insights into the Design of Primaquine-Based Antimalarial Drugs with Less Methemoglobin Generation. Chemical Research in Toxicology, 2015, 28, 169-174.	3.3	6
43	Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics. Antimicrobial Agents and Chemotherapy, 2015, 59, 2380-2387.	3.2	66
44	Enantioselective Pharmacokinetics of Primaquine in Healthy Human Volunteers. Drug Metabolism and Disposition, 2015, 43, 571-577.	3.3	20
45	Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics. Antimicrobial Agents and Chemotherapy, 2015, 59, 3864-3869.	3.2	36
46	A New Metabolite with a Unique 4-Pyranoneâ^îî³-Lactam–1,4-Thiazine Moiety from a Hawaiian-Plant Associated Fungus. Organic Letters, 2015, 17, 3556-3559.	4.6	54
47	<i>Echinacea purpurea</i> up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway. Xenobiotica, 2015, 45, 218-229.	1.1	31
48	Evaluation of drug interaction potential of Labisia pumila (Kacip Fatimah) and its constituents. Frontiers in Pharmacology, 2014, 5, 178.	3.5	21
49	Evaluation of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Properties of Mitragynine, 7-Hydroxymitragynine, and Mitraphylline. Planta Medica, 2014, 80, 568-576.	1.3	61
50	Pharmacokinetics and Pharmacodynamics of (+)-Primaquine and (â^')-Primaquine Enantiomers in Rhesus Macaques (Macaca mulatta). Antimicrobial Agents and Chemotherapy, 2014, 58, 7283-7291.	3.2	21
51	Scalable Preparation and Differential Pharmacologic and Toxicologic Profiles of Primaquine Enantiomers. Antimicrobial Agents and Chemotherapy, 2014, 58, 4737-4744.	3.2	16
52	Enantioselective metabolism of primaquine by human CYP2D6. Malaria Journal, 2014, 13, 507.	2.3	28
53	Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malaria Journal, 2014, 13, 2.	2.3	73
54	Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sciences, 2014, 100, 75-84.	4.3	56

#	Article	IF	CITATIONS
55	Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B. Molecules, 2014, 19, 18936-18952.	3.8	53
56	The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malaria Journal, 2013, 12, 212.	2.3	152
57	Synthesis of [¹³ C ₆]primaquine. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 341-343.	1.0	7
58	Profiling primaquine metabolites in primary human hepatocytes using UHPLCâ€QTOFâ€MS with ¹³ C stable isotope labeling. Journal of Mass Spectrometry, 2013, 48, 276-285.	1.6	24
59	Methemoglobin Generation by 8-Aminoquinolines: Effect of Substitution at 5-Position of Primaquine. Chemical Research in Toxicology, 2013, 26, 1801-1809.	3.3	7
60	Phytochemical, Antimicrobial and Antiplasmodial Investigations of Terminalia brownii. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	10
61	Phytochemical, Antimicrobial and Antiplasmodial Investigations of. Natural Product Communications, 2013, 8, 761-764.	0.5	15
62	CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malaria Journal, 2012, 11, 259.	2.3	97
63	Antiparasitic and Anticancer Carvotacetone Derivatives of Sphaeranthus bullatus. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	1
64	Understanding the mechanisms for metabolism-linked hemolytic toxicity of primaquine against glucose 6-phosphate dehydrogenase deficient human erythrocytes: Evaluation of eryptotic pathway. Toxicology, 2012, 294, 54-60.	4.2	89
65	Antiparasitic and Antimicrobial Isoflavanquinones from <i>Abrus schimperi</i> . Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	7
66	Analysis of primaquine and its metabolite carboxyprimaquine in biological samples: enantiomeric separation, method validation and quantification. Biomedical Chromatography, 2011, 25, 1010-1017.	1.7	18
67	Antimicrobial and Antiparasitic Abietane Diterpenoids from the Roots of <i>Clerodendrum eriophyllum</i> . Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	19
68	Developing and Characterizing a Mouse Model of Hepatotoxicity Using Oral Pyrrolizidine Alkaloid (Monocrotaline) Administration, with Potentiation of the Liver Injury by Co-administration of LPS. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	2
69	Antimicrobial, Antiparasitic and Cytotoxic Spermine Alkaloids from <i>Albizia Schimperiana</i> . Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	28
70	Bioactive (+)-Manzamine A and (+)-8-Hydroxymanzamine A Tertiary Bases and Salts from <i>Acanthostrongylophora Ingens</i> and Their Preparations. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	8
71	Cytochrome P450-dependent toxic effects of primaquine on human erythrocytes. Toxicology and Applied Pharmacology, 2009, 241, 14-22.	2.8	67
72	Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochemistry Letters, 2008, 1, 89-93.	1.2	72

#	Article	IF	CITATIONS
73	8-Aminoquinolines: future role as antiprotozoal drugs. Current Opinion in Infectious Diseases, 2006, 19, 623-631.	3.1	116
74	New Indole Alkaloids from the Bark ofNaucleaorientalis. Journal of Natural Products, 2001, 64, 1001-1005.	3.0	56
75	A New Naphthopyrone Derivative fromCassia quinquangulataand Structural Revision of Quinquangulin and Its Glycosides. Journal of Natural Products, 2001, 64, 1153-1156.	3.0	18
76	Determination of Heavy Metals and Pesticides in Ginseng Products. Journal of AOAC INTERNATIONAL, 2001, 84, 936-939.	1.5	65
77	Characterization of the Major Metabolite of Sampangine in Rats. Journal of Natural Products, 2000, 63, 685-687.	3.0	13
78	In vitro and in vivo interactions of furosemide and sucralfate. Pharmaceutical Research, 1987, 04, 171-172.	3.5	4
79	Excretion of metabolites in bile following the administration of primaquine to rats. Pharmaceutical Research, 1985, 02, 231-233.	3.5	2
80	Botanical Supplements and Hepatotoxicity. , 0, , 589-606.		1
81	Mechanisms of 8â€aminoquinoline induced haemolytic toxicity in a G6PDd humanized mouse model. Journal of Cellular and Molecular Medicine, 0, , .	3.6	2