
Elena Klesareva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated Lipoprotein(a) Level Influences Familial Hypercholesterolemia Diagnosis. Diseases (Basel,) Tj ETQq1 1	0.784314 r 2.5	gBT_/Overloc
2	Lipoprotein(a), Immune Cells and Cardiovascular Outcomes in Patients with Premature Coronary Heart Disease. Journal of Personalized Medicine, 2022, 12, 269.	2.5	13
3	The relationship between the level of LÑ€(а) and the prevalence of atherosclerosis among young patients. Terapevticheskii Arkhiv, 2022, 94, 479-484.	0.8	1
4	Lipoprotein(a) concentration and the blood content of INFγ-producing T-helpers 17 (Th17/1) in males with premature coronary artery disease. Russian Journal of Cardiology, 2022, 27, 5046.	1.4	0
5	Association of various lipid parameters with premature coronary artery disease in men. Russian Journal of Cardiology, 2022, 27, 5058.	1.4	3
6	Prevalence of familial hypercholesterolemia and hyperlipoproteinemia(a) in patients with premature acute coronary syndrome. Russian Journal of Cardiology, 2022, 27, 5041.	1.4	2
7	Lipoprotein(a), Immunity, and Inflammation in Polyvascular Atherosclerotic Disease. Journal of Cardiovascular Development and Disease, 2021, 8, 11.	1.6	12
8	Role of inflammation, autotaxin and lipoprotein (a) in degenerative aortic valve stenosis in patients with coronary artery disease. Cardiovascular Therapy and Prevention (Russian Federation), 2021, 20, 2598.	1.4	2
9	The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. Journal of Cardiovascular Development and Disease, 2021, 8, 63.	1.6	11
10	Effect of Evolocumab on Lipoprotein(a) and PCSK9 in Healthy Individuals with Elevated Lipoprotein(a) Level. Journal of Cardiovascular Development and Disease, 2020, 7, 45.	1.6	7
11	Role of lipoprotein(a) and its autoantibodies in polyvascular atherosclerotic disease. European Heart Journal, 2020, 41, .	2.2	0
12	Circulating Complex of Lipoprotein(a) and Proprotein Convertase Subtilisin/Kexin Type 9 in the Serum Measured by ELISA. Bulletin of Experimental Biology and Medicine, 2020, 169, 639-643.	0.8	3
13	Abstract 13769: Assessing the Risk for Cardiovascular Diseases According to Lipoprotein(a) Levels. Circulation, 2020, 142, .	1.6	0
14	Elevated Levels Of Lipoprotein(A) And C-Reactive Protein As Risk Factors Of Severe Atherosclerosis In Women. Atherosclerosis, 2019, 287, e229.	0.8	0
15	Lipoprotein(A) Level And Autoantibodies To It In Patients With Stenotic Carotid Atherosclerosis. Atherosclerosis, 2019, 287, e229.	0.8	0
16	Dynamics Of Plasma Levels Of Lipoprotein(A), Pcsk9, And Their Complex After A Single Injection Of Evolocumab. Atherosclerosis, 2019, 287, e198.	0.8	0
17	Association Of Lipoprotein(A) With Lower Extremity Artery Disease And Cardiovascular Outcomes After Peripheral Revascularization. Atherosclerosis, 2019, 287, e57-e58.	0.8	0
18	A Low-Molecular-Weight Phenotype of Apolipoprotein(a) as a Factor Provoking Accumulation of Cholesterol by THP-1 Monocyte-Like Cells. Bulletin of Experimental Biology and Medicine, 2019, 167, 24-29.	0.8	2

Elena Klesareva

#	Article	IF	CITATIONS
19	The Dynamics Of Circulating Psck9, Lp(A) And Pcsk9-Apob100 Lipoproteins Complexes During Statin Therapy. Atherosclerosis, 2019, 287, e204.	0.8	0
20	Low Blood Content of IL-10-Producing CD4+ T Cells as a Risk Factor for Progression of Coronary Atherosclerosis. Bulletin of Experimental Biology and Medicine, 2019, 166, 330-333.	0.8	6
21	Effect of atorvastatin and rosuvastatin on the PCSK9 blood concentration in statin-naive patients with atherosclerosis. Russian Journal of Cardiology, 2019, , 52-55.	1.4	0
22	P6272The relationship between plasma levels of lipoprotein(a) [Lp(a)], PCSK9 and their complex in hypercholesterolemic patients depends on the apolipoprotein(a) phenotype. European Heart Journal, 2018, 39, .	2.2	0
23	ATHEROSCLEROSIS PROGRESSION IN PATIENTS WITH BREAST CANCER IN THE SHORT-TERM PERIOD. Journal of Hypertension, 2018, 36, e98.	0.5	0
24	lgM autoantibodies against lipoprotein(A) as an "anti-atherogenic―factor in patients with severe hyperlipidemia. Atherosclerosis, 2018, 275, e17-e18.	0.8	0
25	Lipoprotein(a), apolipoprotein(a) phenotypes and multisite atherosclerosis. Atherosclerosis, 2018, 275, e159.	0.8	0
26	The role of lipoprotein(a) and apolipoprotein(a) phenotypes in severe atherosclerosis of coronary, carotid and lower limbs arteries. Atherosclerosis, 2018, 275, e162.	0.8	0
27	Elevated autotaxin plasma level as a marker of aortic valve stenosis in patients with coronary heart disease. Atherosclerosis, 2018, 275, e164.	0.8	0
28	High Lipoprotein(a) Level is a Predictor of Peripheral Artery Disease Regardless of the Presence of Type 2 Diabetes. Atherosclerosis Supplements, 2018, 32, 42.	1.2	0
29	The relationship between the PCSK9 and lipoprotein(a) concentrations in patients with severe hypercholesterolemia depending on the apolipoprotein(a) phenotype Kardiologicheskii Vestnik, 2018, 13, 45.	0.4	1
30	The association of lipoprotein(a) and apolipoprotein(a) phenotypes with peripheral artery disease. Terapevticheskii Arkhiv, 2018, 90, 31-36.	0.8	8
31	RAISED LEVEL OF LIPOPROTEIDE(A) AS A PREDICTOR OF CARDIOVASCULAR COMPLICATION POST REVASCULARIZATION OF THE LOWER EXTREMETIES ARTERIES. Russian Journal of Cardiology, 2018, , 7-12.	1.4	0
32	RAISED IgM AUTOANTIBODY TITER TO LIPOPROTEIDE(A) AS ANTIATHEROGENIC FACTOR IN SEVERE HYPERCHOLESTEROLEMIA PATIENTS. Russian Journal of Cardiology, 2018, , 13-20.	1.4	2
33	Inflammation markers in coronary heart disease patients with aortic valve stenosis. Russian Journal of Cardiology, 2018, , 17-22.	1.4	1
34	Lipoprotein(a) and lipids in patients with aortic valve stenosis (AVS) with and without coronary heart diseases. Atherosclerosis, 2017, 263, e208-e209.	0.8	0
35	Lipoprotein(A) level as a discriminator of severe peripheral atherosclerosis. Atherosclerosis, 2017, 263, e65-e66.	0.8	1
36	P1411Lipoprotein(a) is a marker of peripheral artery disease in the absence of coronary heart disease. European Heart Journal, 2017, 38, .	2.2	1

3

Elena Klesareva

#	Article	IF	CITATIONS
37	Characteristics of Lipoprotein(a)-Containing Circulating Immune Complexes as Markers of Coronary Heart Disease. Bulletin of Experimental Biology and Medicine, 2016, 162, 231-236.	0.8	6
38	Lipoprotein(a) and T-helper cells as independent predictors of rapid progression of carotid atherosclerosis. Atherosclerosis, 2016, 252, e126-e127.	0.8	1
39	Increased frequencies of circulating T-helpers 17 and diminished regulatory T-cells to T-helpers 17 ratio predict carotid atherosclerosis progression. Atherosclerosis, 2016, 252, e178-e179.	0.8	0
40	Opposite changes of regulatory T cell blood content may differentially contribute to atherosclerosis or lymphoproliferative disorders. OnCOReview, 2016, 6, 29-36.	0.1	1
41	Lp(a), autoantibodies to Lp(a) and minor T-cell subpopulations in patients with coronary atherosclerosis. Atherosclerosis, 2015, 241, e101.	0.8	0
42	Serum levels of matrix metalloproteases 7 and 9 are associated with necrotic core size of coronary plaques in stable chd patients. Atherosclerosis, 2014, 235, e62.	0.8	0
43	Lipoprotein(a) and autoantibodies against lipoprotein(a) in patients with coronary heart disease Atherosclerosis, 2014, 235, e166.	0.8	0
44	Autoantibodies Against Lipoprotein(a) in Patients With Coronary Heart Disease. Kardiologiya, 2014, 6_2014, 4-8.	0.7	6
45	Preparation of affinity sorbents with immobilized synthetic ligands for therapeutic apheresis. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4, 303-307.	0.4	6