
Leonard Vuyani Mabinya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. Bioresources and Bioprocessing, 2020, 7, .	4.2	5
2	Studies on peroxidase production and detection of Sporotrichum thermophile-like catalase-peroxidase gene in a Bacillus species isolated from Hogsback forest reserve, South Africa. Heliyon, 2019, 5, e03012.	3.2	8
3	Biochemical and molecular characterization of a novel dye-decolourizing peroxidase from Raoultella ornithinolytica OKOH-1. International Journal of Biological Macromolecules, 2019, 121, 454-462.	7.5	20
4	Agrowastes utilization by <i>Raoultella ornithinolytica</i> for optimal extracellular peroxidase activity. Biotechnology and Applied Biochemistry, 2019, 66, 60-67.	3.1	8
5	Ligninolytic enzymes: Versatile biocatalysts for the elimination of endocrineâ€disrupting chemicals in wastewater. MicrobiologyOpen, 2018, 7, e00722.	3.0	33
6	Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa. 3 Biotech, 2017, 7, 78.	2.2	8
7	Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnology Reports (Amsterdam, Netherlands), 2017, 16, 12-17.	4.4	48
8	Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 2017, 6, e00394.	3.0	192
9	Assessment of Bacillus pumilus Isolated from Fresh Water Milieu for Bioflocculant Production. Applied Sciences (Switzerland), 2016, 6, 211.	2.5	29
10	Optimization of Cellulase and Xylanase Production by Micrococcus Species under Submerged Fermentation. Sustainability, 2016, 8, 1168.	3.2	27
11	Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. MicrobiologyOpen, 2016, 5, 177-211.	3.0	93
12	Evaluation of flocculating performance of a thermostable bioflocculant produced by marine <i>Bacillus</i> sp Environmental Technology (United Kingdom), 2016, 37, 1829-1842.	2.2	28
13	Bacillus toyonensis Strain AEMREC6, a Bacterium Isolated from South African Marine Environment Sediment Samples Produces a Glycoprotein Bioflocculant. Molecules, 2015, 20, 5239-5259.	3.8	29
14	Characterization of a Bioflocculant (MBF-UFH) Produced by Bacillus sp. AEMREG7. International Journal of Molecular Sciences, 2015, 16, 12986-13003.	4.1	50
15	Characterization and Flocculating Properties of a Biopolymer Produced by <i>Halomonas</i> sp. Okoh. Water Environment Research, 2015, 87, 298-303.	2.7	5
16	Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model. Colloids and Surfaces B: Biointerfaces, 2014, 116, 257-264.	5.0	54
17	Characterization and flocculation efficiency of a bioflocculant produced by a marine <i>Halobacillus</i> . Environmental Technology (United Kingdom), 2013, 34, 2671-2679.	2.2	28
18	Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacteriumsp. Mayor. BMC Biotechnology, 2013, 13, 62.	3.3	33

#	Article	IF	CITATIONS
19	Characterization of a Bioflocculant Produced by a Consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. International Journal of Environmental Research and Public Health, 2013, 10, 5097-5110.	2.6	58
20	Studies on Bioflocculant Production by Arthrobacter sp. Raats, a Freshwater Bacteria Isolated from Tyume River, South Africa. International Journal of Molecular Sciences, 2012, 13, 1054-1065.	4.1	48
21	A Freshwater Streptomyces, Isolated from Tyume River, Produces a Predominantly Extracellular Glycoprotein Bioflocculant. International Journal of Molecular Sciences, 2012, 13, 8679-8695.	4.1	40
22	Production and characterization of bioflocculant produced by <i>Halobacillus</i> sp. Mvuyo isolated from bottom sediment of Algoa Bay. Environmental Technology (United Kingdom), 2012, 33, 967-973.	2.2	26
23	Bioflocculant Production by Virgibacillus sp. Rob Isolated from the Bottom Sediment of Algoa Bay in the Eastern Cape, South Africa. Molecules, 2011, 16, 2431-2442.	3.8	70
24	Halomonas sp. OKOH—A Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay—Produces a Polysaccharide Bioflocculant: Partial Characterization and Biochemical Analysis of Its Properties. Molecules, 2011, 16, 4358-4370.	3.8	29
25	Antibiotic Producing Potentials of Three Freshwater Actinomycetes Isolated from the Eastern Cape Province of South Africa. International Journal of Molecular Sciences, 2010, 11, 2612-2623.	4.1	24
26	Antimicrobial and antioxidative activities ofTagetes minuta, Lippia javanicaandFoeniculum vulgareessential oils from the Eastern Cape Province of South Africa. Journal of Essential Oil-bearing Plants: JEOP, 2004, 7, 68-78.	1.9	20