
Kristin I Stanford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721229/publications.pdf Version: 2024-02-01

KDISTIN I STANFORD

#	Article	IF	CITATIONS
1	Brown adipose tissue prevents glucose intolerance and cardiac remodeling in high-fat-fed mice after a mild myocardial infarction. International Journal of Obesity, 2022, 46, 350-358.	3.4	8
2	Batokines: Mediators of Inter-Tissue Communication (a Mini-Review). Current Obesity Reports, 2022, 11, 1-9.	8.4	32
3	Distinct Effects of High-Fat and High-Phosphate Diet on Glucose Metabolism and the Response to Voluntary Exercise in Male Mice. Nutrients, 2022, 14, 1201.	4.1	1
4	Exerkines in health, resilience and disease. Nature Reviews Endocrinology, 2022, 18, 273-289.	9.6	268
5	The Heartwarming Effect of Brown Adipose Tissue. Molecular Pharmacology, 2022, 102, 39-50.	2.3	9
6	Metabolic tradeâ \in off and adipose tissue role in Neonatal Sepsis. FASEB Journal, 2022, 36, .	0.5	0
7	Exosome Delivery to the Heart: What Can Brown Fat Do for You?. Circulation Research, 2022, 131, 148-150.	4.5	0
8	Neonatal apneic phenotype in a murine congenital central hypoventilation syndrome model is induced through non ell autonomous developmental mechanisms. Brain Pathology, 2021, 31, 84-102.	4.1	16
9	A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation, 2021, 143, 145-159.	1.6	81
10	Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus. Virology, 2021, 559, 111-119.	2.4	10
11	Cardiac-derived TGF-β1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function. Molecular Metabolism, 2021, 54, 101343.	6.5	4
12	Phospho-ablation of cardiac sodium channel Nav1.5 mitigates susceptibility to atrial fibrillation and improves glucose homeostasis under conditions of diet-induced obesity. International Journal of Obesity, 2021, 45, 795-807.	3.4	9
13	Slit2-Mediated Metabolic Reprogramming in Bone Marrow-Derived Macrophages Enhances Antitumor Immunity. Frontiers in Immunology, 2021, 12, 753477.	4.8	5
14	Disruption of energy utilization in diabetic cardiomyopathy; a mini review. Current Opinion in Pharmacology, 2020, 54, 82-90.	3.5	20
15	Sigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts. Cellular Signalling, 2020, 75, 109732.	3.6	6
16	Exercise-induced 3′-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nature Metabolism, 2020, 2, 678-687.	11.9	46
17	Maternal and paternal exercise regulate offspring metabolic health and beta cell phenotype. BMJ Open Diabetes Research and Care, 2020, 8, e000890.	2.8	31
18	Amino acid-based compound activates atypical PKC and leptin receptor pathways to improve glycemia and anxiety like behavior in diabetic mice. Biomaterials, 2020, 239, 119839.	11.4	6

KRISTIN | STANFORD

#	Article	IF	CITATIONS
19	Exercise-Induced Adaptations to Adipose Tissue Thermogenesis. Frontiers in Endocrinology, 2020, 11, 270.	3.5	46
20	Exercise does not ameliorate cardiac dysfunction in obese mice exposed to fine particulate matter. Life Sciences, 2019, 239, 116885.	4.3	3
21	The Regulation of Lipokines by Environmental Factors. Nutrients, 2019, 11, 2422.	4.1	23
22	Exercise Training Induces Depot-Specific Adaptations to White and Brown Adipose Tissue. IScience, 2019, 11, 425-439.	4.1	91
23	The beneficial effects of brown adipose tissue transplantation. Molecular Aspects of Medicine, 2019, 68, 74-81.	6.4	75
24	Effects of Exercise to Improve Cardiovascular Health. Frontiers in Cardiovascular Medicine, 2019, 6, 69.	2.4	171
25	Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. Biology, 2019, 8, 9.	2.8	64
26	TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nature Metabolism, 2019, 1, 291-303.	11.9	128
27	Effects of exercise on brown and beige adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 71-78.	2.4	78
28	Transplantation of Preâ€adipocytes and Stem Progenitors from Brown Adipose Tissue (BAT) Stromal Vascular Fraction (SVF) Improves Glucose Metabolism of the Recipients. FASEB Journal, 2019, 33, 694.6.	0.5	1
29	Dissecting the Contribution of Specific Hindbrain Cell Populations in the Phenotypic Characterization of a Mouse Model of Central Congenital Hypoventilation Syndrome. FASEB Journal, 2019, 33, 802.51.	0.5	0
30	Maternal Exercise Improves the Metabolic Health of Adult Offspring. Trends in Endocrinology and Metabolism, 2018, 29, 164-177.	7.1	43
31	12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metabolism, 2018, 27, 1111-1120.e3.	16.2	215
32	Exercise-induced adaptations to white and brown adipose tissue. Journal of Experimental Biology, 2018, 221, .	1.7	86
33	Muscle-Adipose Tissue Cross Talk. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029801.	6.2	80
34	Preconception Exposure to Fine Particulate Matter Leads to Cardiac Dysfunction in Adult Male Offspring. Journal of the American Heart Association, 2018, 7, e010797.	3.7	21
35	Paternal Exercise Improves Glucose Metabolism in Adult Offspring. Diabetes, 2018, 67, 2530-2540.	0.6	78
36	βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. Journal of Clinical Investigation, 2018, 128, 5561-5572.	8.2	36

KRISTIN I STANFORD

#	Article	IF	CITATIONS
37	Lipidomic Adaptations in White and Brown Adipose Tissue in Response to Exercise Demonstrate Molecular Species-Specific Remodeling. Cell Reports, 2017, 18, 1558-1572.	6.4	68
38	Maternal Exercise Improves Glucose Tolerance in Female Offspring. Diabetes, 2017, 66, 2124-2136.	0.6	89
39	The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nature Medicine, 2017, 23, 631-637.	30.7	309
40	Stress-responsive HILPDA is necessary for thermoregulation during fasting. Journal of Endocrinology, 2017, 235, 27-38.	2.6	5
41	Identification and characterization of a supraclavicular brown adipose tissue in mice. JCI Insight, 2017, 2, .	5.0	29
42	Relationship of brown adipose tissue perfusion and function: a study through β2-adrenoreceptor stimulation. Journal of Applied Physiology, 2016, 120, 825-832.	2.5	16
43	Exercise regulation of adipose tissue. Adipocyte, 2016, 5, 153-162.	2.8	106
44	Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. Journal of Clinical Investigation, 2016, 126, 3433-3446.	8.2	132
45	Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes, 2015, 64, 2361-2368.	0.6	268
46	A Novel Role for Subcutaneous Adipose Tissue in Exercise-Induced Improvements in Glucose Homeostasis. Diabetes, 2015, 64, 2002-2014.	0.6	248
47	Exercise and Regulation of Carbohydrate Metabolism. Progress in Molecular Biology and Translational Science, 2015, 135, 17-37.	1.7	105
48	Exercise Before and During Pregnancy Prevents the Deleterious Effects of Maternal High-Fat Feeding on Metabolic Health of Male Offspring. Diabetes, 2015, 64, 427-433.	0.6	119
49	Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. American Journal of Physiology - Advances in Physiology Education, 2014, 38, 308-314.	1.6	227
50	Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation, 2014, 124, 515-527.	8.2	201
51	Hepatic Remnant Lipoprotein Clearance by Heparan Sulfate Proteoglycans and Low-Density Lipoprotein Receptors Depend on Dietary Conditions in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2065-2074.	2.4	69
52	Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation, 2013, 123, 215-223.	8.2	964
53	The therapeutic potential of brown adipose tissue. Hepatobiliary Surgery and Nutrition, 2013, 2, 286-7.	1.5	9
54	A Novel Role for Adipose Tissue in Exerciseâ€Induced Improvements in Glucose Homeostasis. FASEB Journal, 2012, 26, 1142.15.	0.5	0

KRISTIN | STANFORD

#	Article	IF	CITATIONS
55	Deletion of the Basement Membrane Heparan Sulfate Proteoglycan Type XVIII Collagen Causes Hypertriglyceridemia in Mice and Humans. PLoS ONE, 2010, 5, e13919.	2.5	46
56	Heparan Sulfate 2-O-Sulfotransferase Is Required for Triglyceride-rich Lipoprotein Clearance*. Journal of Biological Chemistry, 2010, 285, 286-294.	3.4	76
57	Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Journal of Clinical Investigation, 2009, 119, 3236-45.	8.2	176
58	Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Current Opinion in Lipidology, 2008, 19, 307-313.	2.7	47
59	Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. Journal of Clinical Investigation, 2007, 117, 153-164.	8.2	177
60	Influence of menstrual cycle phase on pulmonary function in asthmatic athletes. European Journal of Applied Physiology, 2006, 96, 703-710.	2.5	45