List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and properties of core–shell halloysite–polyaniline nanocomposites. Applied Nanoscience (Switzerland), 2022, 12, 1285-1294.	3.1	5
2	The Impact of Interfacial Interactions on Structural, Electronic, and Sensing Properties of Poly(3â€methylthiophene) in Coreâ€Shell Nanocomposites. Application for Chemical Warfare Agent Simulants Detection. Macromolecular Materials and Engineering, 2022, 307, .	3.6	6
3	Broadband dielectric characterization of flexible substrates using organic conductive polymer microstrip lines. Microwave and Optical Technology Letters, 2020, 62, 688-695.	1.4	1
4	Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Applied Nanoscience (Switzerland), 2020, 10, 4951-4964.	3.1	6
5	Polyaniline Doping by α,α-Difluoro-β-amino Acids. ACS Omega, 2019, 4, 7400-7410.	3.5	9
6	High effectiveness of pure polydopamine in extraction of uranium and plutonium from groundwater and seawater. RSC Advances, 2019, 9, 30052-30063.	3.6	11
7	On the importance of interface interactions in core-shell nanocomposites of intrinsically conducting polymers. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2019, 22, 470-478.	1.0	7
8	Flexible UWB organic antenna for wearable technologies application. IET Microwaves, Antennas and Propagation, 2018, 12, 160-166.	1.4	54
9	Poly(vinylidene fluoride)/poly(3-methylthiophene) core–shell nanocomposites with improved structural and electronic properties of the conducting polymer component. Physical Chemistry Chemical Physics, 2018, 20, 6450-6461.	2.8	15
10	Magnetodielectric Nanocomposite Polymer-Based Dual-Band Flexible Antenna for Wearable Applications. IEEE Transactions on Antennas and Propagation, 2018, 66, 3271-3277.	5.1	44
11	From Drifting Polyaniline Sensor to Accurate Sensor Array for Breath Analysis. , 2018, , .		1
12	Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. Sensors and Actuators B: Chemical, 2018, 274, 616-626.	7.8	72
13	Effect of the Dopant Anion and Oxidant on the Structure and Properties of Nanocomposites of Polypyrrole and Carbon Nanotubes. Theoretical and Experimental Chemistry, 2018, 54, 114-121.	0.8	8
14	Design, fabrication and characterization of a new wideband antenna based on a Polyaniline/Carbon coated Cobalt composite. , 2017, , .		1
15	UV-light induced solid-phase photodegradation in PANI nanocomposites. , 2017, , .		0
16	The specificity of the core-shell polyvinylidene/polyaniline nanocomposite sensing applications. , 2017, ,		0
17	Hybrid and Bio Nanocomposites for Ultrasensitive Ammonia Sensors. Proceedings (mdpi), 2017, 1, .	0.2	3
18	New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid. Nanoscale Research Letters, 2017, 12, 493.	5.7	11

#	Article	IF	CITATIONS
19	Macroscopic versus microscopic photovoltaic response of heterojunctions based on mechanochemically prepared nanopowders of kesterite and n-type semiconductors. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2017, 20, 418-423.	1.0	2
20	Acid-dopant effects in the formation and properties of polycarbonate-polyaniline composites. Synthetic Metals, 2016, 217, 266-275.	3.9	13
21	Influence of Dispersed Nanoparticles on the Kinetics of Formation and Molecular Mass of Polyaniline. Journal of Physical Chemistry B, 2016, 120, 10106-10113.	2.6	7
22	The PANI-DBSA content and dispersing solvent as influencing parameters in sensing performances of TiO ₂ /PANI-DBSA hybrid nanocomposites to ammonia. RSC Advances, 2016, 6, 82625-82634.	3.6	11
23	Development of a patch antenna based on a Polyaniline/Carbon coated Cobalt composite. , 2016, , .		2
24	Hybrid solar cell on a carbon fiber. Nanoscale Research Letters, 2016, 11, 265.	5.7	18
25	Evolution and Interdependence of Structure and Properties of Nanocomposites of Multiwall Carbon Nanotubes with Polyaniline. Journal of Physical Chemistry C, 2016, 120, 230-242.	3.1	35
26	Multifunctional Role of Nanostructured CdS Interfacial Layers in Hybrid Solar Cells. Journal of Nanoscience and Nanotechnology, 2015, 15, 752-758.	0.9	7
27	Ammonia/amine electronic gas sensors based on hybrid polyaniline–TiO ₂ nanocomposites. The effects of titania and the surface active doping acid. RSC Advances, 2015, 5, 20218-20226.	3.6	45
28	Effect of Multiwalled Carbon Nanotubes on the Kinetics of the Aniline Polymerization: The Semi-Quantitative OCP Approach. Journal of Physical Chemistry B, 2015, 119, 5055-5061.	2.6	9
29	"Anion-chromic―interactions of emeraldine base with hydroxide and halide anions in the solid polymer matrix. Synthetic Metals, 2015, 209, 232-239.	3.9	4
30	Dual-Band Elliptical Planar Conductive Polymer Antenna Printed on a Flexible Substrate. IEEE Transactions on Antennas and Propagation, 2015, 63, 5864-5867.	5.1	39
31	Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material. Sensors and Actuators B: Chemical, 2014, 190, 398-407.	7.8	27
32	Polyaniline-carbon nanotubes composites — Based patch antenna. , 2014, , .		6
33	Efficient Bilayer Electrodes for Photosensitive Organic Heterostructure. Molecular Crystals and Liquid Crystals, 2014, 589, 162-170.	0.9	Ο
34	Effect of the Nature of the Template on the Structure and Properties of Electrodeposited Vertically Aligned Submicron ZnO Rods. Theoretical and Experimental Chemistry, 2013, 49, 255-260.	0.8	0
35	Application of a CdS nanostructured layer in inverted solar cells. Journal Physics D: Applied Physics, 2013, 46, 495114.	2.8	7
36	Deep Impact of the Template on Molecular Weight, Structure, and Oxidation State of the Formed Polyaniline. Journal of Physical Chemistry B, 2013, 117, 5306-5314.	2.6	33

#	Article	IF	CITATIONS
37	Poly(3-methylthiophene)–polyaniline couple spectroelectrochemistry revisited for the complementary red–green–blue electrochromic device. Electrochimica Acta, 2013, 106, 114-120.	5.2	22
38	Hybrid Solar Cells Based on CdS Nanowire Arrays. Advanced Materials Research, 2013, 854, 75-82.	0.3	2
39	Carbon fiber as a flexible quasi-ohmic contact to cadmium sulfide micro- and nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1851-1855.	1.8	5
40	P2.3.9 Polyaniline/poly(ethylene terephthalate) films as a sensing material in optical sensors for basic and acidic substances. , 2012, , .		0
41	Tetraalkylammonium hydroxide template effects in electrodeposited nanostructured ZnO layers. , 2012, , .		0
42	Electrochemically assembled planar hybrid poly(3-methylthiophene)/ZnO nanostructured composites. Electrochimica Acta, 2012, 81, 83-89.	5.2	7
43	Tuning of the charge and energy transfer in ternary CdSe/poly(3-methylthiophene)/poly(3-hexylthiophene) nanocomposite system. Colloid and Polymer Science, 2012, 290, 1145-1156.	2.1	8
44	Evidence of the Controlled Interaction between PEDOT and PSS in the PEDOT:PSS Complex via Concentration Changes of the Complex Solution. Journal of Physical Chemistry B, 2011, 115, 1357-1362.	2.6	50
45	Interaction of polyaniline with hydroxyl-ions in N-methylpyrrolidinone. Synthetic Metals, 2011, 161, 1813-1819.	3.9	4
46	In-situ conductivity and UV-VIS absorption monitoring of iodine doping-dedoping processes in poly(3-hexylthiophene) (P3HT). Journal of Physics: Conference Series, 2011, 286, 012009.	0.4	8
47	Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sensors and Actuators B: Chemical, 2011, 160, 1394-1403.	7.8	93
48	Structure–property relationship in aliphatic polyamide/polyaniline surface layered composites. Materials Chemistry and Physics, 2011, 130, 760-768.	4.0	17
49	Effect of water-soluble polyaniline on the reduction of oxygen and the reaction of its active forms with antioxidants. Theoretical and Experimental Chemistry, 2011, 47, 238-243.	0.8	Ο
50	Synthesis and Properties of Hybrid Poly(3-Methylthiophene)-CdSe Nanocomposite and Estimation of Its Photovoltaic Ability. Molecular Crystals and Liquid Crystals, 2011, 536, 33/[265]-40/[272].	0.9	6
51	A photovoltaic response of a Schottky diode based on the conducting polymer PEDOT:PSS and inorganic semiconductors. EPJ Applied Physics, 2010, 51, 20301.	0.7	1
52	In situ spectroelectrochemical study of dissolved oligomer products formed in the electrochemical polymerization of 3-methylthiophene. Theoretical and Experimental Chemistry, 2010, 46, 158-162.	0.8	2
53	Formation of nanostructured composites with environmentally-dependent electrical properties based on poly(vinylidene fluoride)–polyaniline core–shell latex system. Polymer, 2010, 51, 2000-2006.	3.8	29
54	Electronic and optical features of N,N′-bis(4-aminophenyl)1,4-quinonenediimine doped with silicotungsten polyacid: Experimental and numerical studies. Chemical Physics Letters, 2010, 497, 76-80.	2.6	1

#	Article	IF	CITATIONS
55	Ternary magnetic nanocomposites based on core–shell Fe ₃ O ₄ /polyaniline nanoparticles distributed in PVDF matrix. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 442-447.	1.8	17
56	Structure and properties of polymer core-shell systems: Helium ion microscopy and electrical conductivity studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6P59-C6P65.	1.2	5
57	Interfacial properties and formation of a Schottky barrier at the CdS/PEDOT : PSS hybrid junction. Journal Physics D: Applied Physics, 2010, 43, 185301.	2.8	13
58	Electronic and optical features of silicon carbide nanoparticles and nanocomposites. , 2009, , .		0
59	Different roles of cadmium―and sulfur (selenium)â€ŧerminated crystal facets in the formation of a photovoltaic response from hybrid organic/inorganic CdS (CdSe) heterojunctions. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2645-2651.	1.8	7
60	PEDOT:PSS films—Effect of organic solvent additives and annealing on the film conductivity. Synthetic Metals, 2009, 159, 2237-2239.	3.9	143
61	Formation and properties of nano- and micro-structured conducting polymer host–guest composites. Synthetic Metals, 2009, 159, 2253-2258.	3.9	8
62	Doping of CdS nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 254-257.	3.5	6
63	Effect of the nature of acid dopant and oxidizer on the polymerization of aniline in the presence of polycarbonate dispersion. Theoretical and Experimental Chemistry, 2008, 44, 54-59.	0.8	5
64	An estimate of shape distribution of small CdS particles with luminescence spectra. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2977-2981.	2.7	1
65	Probing of Charge and Energy Transfer in Hybrid Systems of Anilineâ^'3-Methylthiophene Copolymer with CdS and CdSe Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 14745-14753.	3.1	21
66	Polyamideâ€12/Polyaniline Layered Composite Films: Specificity of the Formation and Raman Spectroscopy Investigation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 183-192.	2.2	9
67	Hybrid Coreâ^'Shell Nanocomposites Based on Silicon Carbide Nanoparticles Functionalized by Conducting Polyaniline:  Electron Paramagnetic Resonance Investigations. Journal of Physical Chemistry C, 2007, 111, 11544-11551.	3.1	39
68	New Aspects of the Low-Concentrated Aniline Polymerization in the Solution and in SiC Nanocrystals Dispersion. Journal of Physical Chemistry B, 2007, 111, 2174-2180.	2.6	30
69	Electrical properties and fractal behavior of polyurethane elastomer/polyaniline composites under mechanical deformation. Polymer, 2007, 48, 4429-4437.	3.8	32
70	Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices. Physical Review B, 2006, 74, .	3.2	17
71	Effects of surface and volume modification of poly(vinylidene fluoride) by polyaniline on the structure and electrical properties of their composites. Polymer, 2005, 46, 11728-11736.	3.8	43
72	Structure/Property Relationships for Poly(Vinylidene Fluoride)/Doped Polyaniline Blends. Journal of Macromolecular Science - Physics, 2005, 44, 749-759.	1.0	8

#	Article	IF	CITATIONS
73	The influence of the polymer matrix on the dielectric and electrical properties of conductive polymer composites based on polyaniline. Journal of Non-Crystalline Solids, 2005, 351, 2835-2841.	3.1	43
74	Nature of Initiators for Indirect Electrochemical Reductive Degradation of Polycarbonates in Dimethylformamide. Theoretical and Experimental Chemistry, 2004, 40, 33-38.	0.8	2
75	Corrosion inhibition of aluminum alloy in chloride mediums by undoped and doped forms of polyaniline. Synthetic Metals, 2004, 143, 43-47.	3.9	109
76	Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Progress in Polymer Science, 2003, 28, 1701-1753.	24.7	390
77	Electrochemical Polymerization of Aniline in Polyamide and Polyvinyl Alcohol Matrices. Theoretical and Experimental Chemistry, 2002, 38, 33-36.	0.8	4
78	Title is missing!. Journal of Materials Science, 2001, 36, 3355-3363.	3.7	28
79	Reactions at the lower potential limit in aprotic medium at a platinum cathode revisited: their role in indirect electrochemical reductive degradation of polymers. Journal of Electroanalytical Chemistry, 2000, 480, 1-8.	3.8	11
80	Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide). Polymer Degradation and Stability, 2000, 70, 409-415.	5.8	5
81	Electrochemical reductive decomposition of polyacrylonitrile. Theoretical and Experimental Chemistry, 2000, 36, 220-223.	0.8	1
82	Electropolymerization of pyrrole in polymer matrices. Russian Journal of Electrochemistry, 2000, 36, 447-447.	0.9	5
83	Investigation of Processes Occurring at the Metal/Polymer Coating/Electrolyte Interface. Journal of Adhesion, 1999, 71, 55-80.	3.0	4
84	Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids. Synthetic Metals, 1999, 107, 111-115.	3.9	63
85	Electrochemical properties of low-molecular carbonates and polycarbonates on the cathode. Theoretical and Experimental Chemistry, 1998, 34, 348-351.	0.8	1
86	Indirect electrochemical reductive degradation of polycarbonates. Theoretical and Experimental Chemistry, 1998, 34, 292-296.	0.8	1
87	Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta, 1995, 40, 1157-1164.	5.2	28
88	Indirect Electrochemical Dehydrochlorination of Polyvinylchloride. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 687-693.	2.2	5
89	Electrochemically Induced Functionalization of Fluorocontaining Polyolefins. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 621-628.	2.2	2
90	Electrochemical Reductive Degradation of Polydiphenylpropancarbonate. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 613-620.	2.2	5

#	Article	IF	CITATIONS
91	Electrochemistry as the Way to Transform Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 629-638.	2.2	19
92	Stability and degradation of conducting polymers in electrochemical systems. Synthetic Metals, 1994, 66, 1-18.	3.9	199
93	Surface electrochemical reactions and the subsequent degradation of solid-phase poly(ethylene) Tj ETQq1 1 0.784	4314 rgBT 5.8	/Overlock 1
94	Electrochemical reductive breakdown of solid-phase chlorinated rubber in aprotic and aqueous media. Theoretical and Experimental Chemistry, 1989, 25, 653-658.	0.8	0
95	The electrochemical reductive degradation of polyvinyl chloride. Polymer Science USSR, 1987, 29, 1564-1572.	0.2	3
96	Electrochemical reductive degradation of polyethylene terephthalate. Theoretical and Experimental Chemistry, 1985, 20, 548-553.	0.8	0
97	Degradation of some carbon-chain polymers by electrochemical reduction. Polymer Science USSR, 1985, 27, 2427-2431.	0.2	8
98	Electrochemical reductive destruction of polytetrafluoroethylene. Theoretical and Experimental Chemistry, 1984, 20, 234-236.	0.8	4
99	Mechanism of electrochemical reduction of unsaturated oligoesters on solid electrodes. Theoretical and Experimental Chemistry, 1983, 19, 209-212.	0.8	0
100	Study of the dissociation of imidazoline derivatives by means of a field mass spectrometer. Theoretical and Experimental Chemistry, 1980, 15, 323-332.	0.8	0