
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719999/publications.pdf Version: 2024-02-01

DETED COX

#	Article	IF	CITATIONS
1	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 692.	1.6	67
2	Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 642.	1.6	43
3	Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere, 2022, 13, .	2.2	3
4	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	3.6	32
5	Overshooting tippingÂpoint thresholds in a changing climate. Nature, 2021, 592, 517-523.	27.8	79
6	Emergent constraints on climate sensitivities. Reviews of Modern Physics, 2021, 93, .	45.6	28
7	Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics, 2021, 12, 513-544.	7.1	6
8	Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, 2020, 226, 1622-1637.	7.3	95
9	A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications, 2020, 11, 5544.	12.8	50
10	Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia. Biogeosciences, 2020, 17, 1013-1032.	3.3	8
11	The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences, 2020, 17, 3589-3612.	3.3	24
12	Spatially resolved evaluation of Earth system models with satellite column-averaged CO ₂ . Biogeosciences, 2020, 17, 6115-6144.	3.3	8
13	Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivityÂ(ECS) from historical warming in CMIP5 and CMIP6 models. Earth System Dynamics, 2020, 11, 737-750.	7.1	98
14	Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geoscientific Model Development, 2020, 13, 4067-4089.	3.6	14
15	Decadal global temperature variability increases strongly with climate sensitivity. Nature Climate Change, 2019, 9, 598-601.	18.8	31
16	Global vegetation variability and its response to elevated CO ₂ , global warming, and climate variability – a study using the offline SSiB4/TRIFFID model and satellite data. Earth System Dynamics, 2019, 10, 9-29.	7.1	28
17	How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development, 2019, 12, 3207-3240.	3.6	4
18	Emergent Constraints on Climate-Carbon Cycle Feedbacks. Current Climate Change Reports, 2019, 5, 275-281.	8.6	19

#	Article	IF	CITATIONS
19	Modelling ecosystem adaptation and dangerous rates of global warming. Emerging Topics in Life Sciences, 2019, 3, 221-231.	2.6	10
20	Progressing emergent constraints on future climate change. Nature Climate Change, 2019, 9, 269-278.	18.8	195
21	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
22	Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytologist, 2018, 218, 1462-1477.	7.3	67
23	Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 2018, 553, 319-322.	27.8	243
24	The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet, The, 2018, 391, 581-630.	13.7	802
25	Increased importance of methane reduction for a 1.5 degree target. Environmental Research Letters, 2018, 13, 054003.	5.2	61
26	Theoretical foundations of emergent constraints: relationships between climate sensitivity and global temperature variability in conceptual models. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	10
27	Equilibrium forest demography explains the distribution of tree sizes across North America. Environmental Research Letters, 2018, 13, 084019.	5.2	14
28	Leaf area index identified as a major source of variabilityÂin modeled CO ₂ fertilization. Biogeosciences, 2018, 15, 6909-6925.	3.3	25
29	Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170315.	4.0	69
30	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	12.8	194
31	Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience, 2018, 11, 568-573.	12.9	74
32	Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geoscientific Model Development, 2018, 11, 2857-2873.	3.6	49
33	Cox et al. reply. Nature, 2018, 563, E10-E15.	27.8	8
34	An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7, 340-344.	18.8	257
35	Emergent constraints on projections of declining primary production in the tropical oceans. Nature Climate Change, 2017, 7, 355-358.	18.8	108
36	The Lancet Countdown: tracking progress on health and climate change. Lancet, The, 2017, 389, 1151-1164.	13.7	292

#	Article	IF	CITATIONS
37	Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0â€ [–] °C. Earth System Dynamics, 2017, 8, 617-626.	7.1	12
38	Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0. Geoscientific Model Development, 2016, 9, 2833-2852.	3.6	36
39	Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth System Dynamics, 2016, 7, 525-533.	7.1	52
40	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	3.6	115
41	Impacts of Climate Extremes in Brazil: The Development of a Web Platform for Understanding Long-Term Sustainability of Ecosystems and Human Health in Amazonia (PULSE-Brazil). Bulletin of the American Meteorological Society, 2016, 97, 1341-1346.	3.3	11
42	Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature, 2016, 538, 499-501.	27.8	137
43	Early warnings and missed alarms for abrupt monsoon transitions. Climate of the Past, 2015, 11, 1621-1633.	3.4	14
44	Impact of model developments on present and future simulations of permafrost in a global land-surface model. Cryosphere, 2015, 9, 1505-1521.	3.9	54
45	Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1300-1321.	3.3	18
46	Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nature Climate Change, 2015, 5, 777-781.	18.8	53
47	Analysis, Integration and Modeling of the Earth System (AIMES): Advancing the post-disciplinary understanding of coupled human–environment dynamics in the Anthropocene. Anthropocene, 2015, 12, 99-106.	3.3	19
48	An improved representation of physical permafrost dynamics in the JULES land-surface model. Geoscientific Model Development, 2015, 8, 1493-1508.	3.6	79
49	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	13.7	1,311
50	Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 2015, 21, 1762-1776.	9.5	339
51	iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework. Biogeosciences, 2014, 11, 7291-7304.	3.3	65
52	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
53	Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 2014, 7, 796-800.	12.9	42
54	Emergent constraints on climateâ€carbon cycle feedbacks in the CMIP5 Earth system models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 794-807.	3.0	113

#	Article	IF	CITATIONS
55	No increase in global temperature variability despite changing regional patterns. Nature, 2013, 500, 327-330.	27.8	201
56	Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494, 341-344.	27.8	608
57	Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. Journal of Climate, 2013, 26, 6801-6843.	3.2	398
58	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	12.9	358
59	Caribbean coral growth influenced by anthropogenic aerosol emissions. Nature Geoscience, 2013, 6, 362-366.	12.9	20
60	Tipping points in open systems: bifurcation, noise-included and rate-dependent examples in the climate system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130098.	3.4	6
61	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	3.3	11
62	High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 2012, 7, 024002.	5.2	241
63	Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1166-1184.	3.4	314
64	Model complexity versus ensemble size: allocating resources for climate prediction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1087-1099.	3.4	21
65	Quantifying future climate change. Nature Climate Change, 2012, 2, 403-409.	18.8	132
66	Emergent dynamics of the climate–economy system in the Anthropocene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 868-886.	3.4	30
67	Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2026-2037.	3.4	49
68	Soil carbon and climate change: from the Jenkinson effect to the compostâ€bomb instability. European Journal of Soil Science, 2011, 62, 5-12.	3.9	40
69	Excitability in ramped systems: the compost-bomb instability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1243-1269.	2.1	96
70	Excitability in ramped systems: the compost-bomb instability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2733-2733.	2.1	3
71	The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 2011, 4, 677-699.	3.6	993
72	The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 2011, 4, 701-722.	3.6	804

#	Article	IF	CITATIONS
73	Methane radiative forcing controls the allowable CO2 emissions for climate stabilization. Current Opinion in Environmental Sustainability, 2010, 2, 404-408.	6.3	7
74	Estimating the risk of Amazonian forest dieback. New Phytologist, 2010, 187, 694-706.	7.3	132
75	Assessing uncertainties in a secondâ€generation dynamic vegetation model caused by ecological scale limitations. New Phytologist, 2010, 187, 666-681.	7.3	271
76	Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 2010, 187, 647-665.	7.3	189
77	Development of probability density functions for future South American rainfall. New Phytologist, 2010, 187, 682-693.	7.3	29
78	MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1355-1365.	4.0	22
79	Maximum entropy production in environmental and ecological systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1297-1302.	4.0	145
80	Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation. Climate Dynamics, 2009, 32, 287-299.	3.8	14
81	Impact of changes in diffuse radiation on the global land carbon sink. Nature, 2009, 458, 1014-1017.	27.8	858
82	Evapotranspiration. Geophysical Monograph Series, 2009, , 261-272.	0.1	14
83	Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources. Geophysical Monograph Series, 2009, , 273-292.	0.1	23
84	Engineering the climate. Physics World, 2009, 22, 24-27.	0.0	15
85	Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 2008, 453, 212-215.	27.8	326
86	Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and transâ€African migration of plants and animals. Global Change Biology, 2008, 14, 827-840.	9.5	80
87	Evaluation of the terrestrial carbon cycle, future plant geography and climate arbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008, 14, 2015-2039.	9.5	1,097
88	Illuminating the Modern Dance of Climate and CO ₂ . Science, 2008, 321, 1642-1644.	12.6	90
89	What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy?. Environmental Research Letters, 2008, 3, 044002.	5.2	14
90	Amazon Basin climate under global warming: the role of the sea surface temperature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1753-1759.	4.0	81

#	Article	IF	CITATIONS
91	Towards quantifying uncertainty in predictions of Amazon â€ [~] dieback'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1857-1864.	4.0	139
92	A Changing Climate for Prediction. Science, 2007, 317, 207-208.	12.6	128
93	Consequences of the evolution of C4photosynthesis for surface energy and water exchange. Journal of Geophysical Research, 2007, 112, .	3.3	10
94	A strategy for climate change stabilization experiments. Eos, 2007, 88, 217-221.	0.1	111
95	Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 2007, 448, 1037-1041.	27.8	570
96	Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 2007, 448, 791-794.	27.8	886
97	Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 553-565.	1.6	90
98	Positive feedback between global warming and atmospheric CO2concentration inferred from past climate change. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	117
99	An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel. Geophysical Research Letters, 2006, 33, .	4.0	63
100	GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. Journal of Hydrometeorology, 2006, 7, 590-610.	1.9	616
101	The influence of terrestrial ecosystems on climate. Trends in Ecology and Evolution, 2006, 21, 254-260.	8.7	122
102	GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. Journal of Hydrometeorology, 2006, 7, 611-625.	1.9	337
103	Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 603-613.	1.6	54
104	Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 2006, 439, 835-838.	27.8	727
105	A quality-controlled global runoff data set (Reply). Nature, 2006, 444, E14-E15.	27.8	12
106	Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	3.2	2,647
107	Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 2005, 11, 154-166.	9.5	318
108	Strong present-day aerosol cooling implies a hot future. Nature, 2005, 435, 1187-1190.	27.8	577

#	Article	IF	CITATIONS
109	Vegetation and climate variability: a GCM modelling study. Climate Dynamics, 2005, 24, 457-467.	3.8	45
110	Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dynamics, 2005, 25, 189-204.	3.8	83
111	Determining the optimal soil temperature scheme for atmospheric modelling applications. Boundary-Layer Meteorology, 2005, 114, 111-142.	2.3	21
112	On the significance of atmospheric CO2growth rate anomalies in 2002-2003. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	68
113	Modelling the past and the future fate of the Amazonian forest. , 2005, , 191-198.		1
114	Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 539-547.	4.0	92
115	Calibration of a land-surface model using data from primary forest sites in Amazonia. Theoretical and Applied Climatology, 2004, 78, 27.	2.8	20
116	Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System. Climatic Change, 2004, 65, 11-38.	3.6	229
117	Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 2004, 78, 137.	2.8	635
118	The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 2004, 78, 157.	2.8	387
119	Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 2004, 78, 177.	2.8	76
120	Amazonian climate: results and future research. Theoretical and Applied Climatology, 2004, 78, 187.	2.8	22
121	Quantifying, Understanding and Managing the Carbon Cycle in the Next Decades. Climatic Change, 2004, 67, 147-160.	3.6	33
122	Abrupt Changes: The Achilles' Heels of the Earth System. Environment, 2004, 46, 8-20.	1.4	43
123	Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 2004, 305, 1138-1140.	12.6	2,337
124	Climate feedback from wetland methane emissions. Geophysical Research Letters, 2004, 31, .	4.0	245
125	Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology, 2004, 122, 215-227.	4.8	104
126	The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Climate Dynamics, 2003, 21, 515-537.	3.8	309

#	Article	IF	CITATIONS
127	An improved description of soil hydraulic and thermal properties of arctic peatland for use in a GCM. Hydrological Processes, 2003, 17, 2611-2628.	2.6	5
128	Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 642-648.	1.6	127
129	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 692-700.	1.6	256
130	Strong carbon cycle feedbacks in a climate model with interactive CO2and sulphate aerosols. Geophysical Research Letters, 2003, 30, .	4.0	99
131	The Sensitivity of Clobal Climate Model Simulations to the Representation of Soil Moisture Heterogeneity. Journal of Hydrometeorology, 2003, 4, 1265-1275.	1.9	157
132	Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme. Journal of Hydrometeorology, 2003, 4, 530-543.	1.9	365
133	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	1.9	150
134	Modelling vegetation and the carbon cycle as interactive elements of the climate system. International Geophysics, 2002, , 259-279.	0.6	37
135	Comparing the Degree of Land–Atmosphere Interaction in Four Atmospheric General Circulation Models. Journal of Hydrometeorology, 2002, 3, 363-375.	1.9	118
136	Modeling the volcanic signal in the atmospheric CO2record. Global Biogeochemical Cycles, 2001, 15, 453-465.	4.9	109
137	The Carbon Cycle Response to ENSO: A Coupled Climate–Carbon Cycle Model Study. Journal of Climate, 2001, 14, 4113-4129.	3.2	151
138	Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 2001, 7, 357-373.	9.5	1,718
139	Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmospheric Science Letters, 2001, 2, 166-172.	1.9	29
140	Extending North Atlantic Oscillation reconstructions back to 1500. Atmospheric Science Letters, 2001, 2, 114-124.	1.9	332
141	The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2001, 2, 7-25.	1.9	294
142	Impact of CO ₂ Doubling on the Asian Summer Monsoon. Journal of the Meteorological Society of Japan, 2000, 78, 421-439.	1.8	89
143	Characterizing GCM Land Surface Schemes to Understand Their Responses to Climate Change. Journal of Climate, 2000, 13, 3066-3079.	3.2	65
144	Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography, 2000, 9, 171-180.	5.8	74

#	Article	IF	CITATIONS
145	Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408, 184-187.	27.8	3,360
146	An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dynamics, 2000, 16, 575-586.	3.8	137
147	Uncertainties linked to land-surface processes in climate change simulations. Climate Dynamics, 2000, 16, 949-961.	3.8	54
148	Modelling long-term transpiration measurments from grassland in southern England. Agricultural and Forest Meteorology, 2000, 100, 309-322.	4.8	17
149	Contrasting responses of a simple terrestrial ecosystem model to global change. Ecological Modelling, 2000, 134, 41-58.	2.5	59
150	The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 1999, 15, 183-203.	3.8	844
151	A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 1998, 212-213, 79-94.	5.4	329
152	Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Ecological Modelling, 1997, 97, 217-246.	2.5	45
153	Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 1997, 387, 796-799.	27.8	382
154	Response of methane emission from arctic tundra to climatic change: results from a model simulation. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 301-309.	1.6	30
155	Modelling the effects of atmospheric CO2 on vegetation-atmosphere interactions. Agricultural and Forest Meteorology, 1995, 73, 285-295.	4.8	38
156	Pressure-driven thin-shell instabilities in HBTX1C. Plasma Physics and Controlled Fusion, 1990, 32, 1321-1335.	2.1	3
157	Resistive and viscous effects on z-pinch stability. Plasma Physics and Controlled Fusion, 1990, 32, 553-563.	2.1	9
158	The compost bomb instability in the continuum limit. European Physical Journal: Special Topics, 0, , 1.	2.6	4