Peter Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719999/publications.pdf

Version: 2024-02-01

158 papers 36,002 citations

76 h-index 158 g-index

204 all docs

204 docs citations

204 times ranked 28151 citing authors

#	Article	IF	CITATIONS
1	Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408, 184-187.	27.8	3,360
2	Climateâ€"Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 2006, 19, 3337-3353.	3.2	2,647
3	Regions of Strong Coupling Between Soil Moisture and Precipitation. Science, 2004, 305, 1138-1140.	12.6	2,337
4	Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 2001, 7, 357-373.	9.5	1,718
5	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	13.7	1,311
6	Evaluation of the terrestrial carbon cycle, future plant geography and climate arbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 2008, 14, 2015-2039.	9.5	1,097
7	The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 2011, 4, 677-699.	3.6	993
8	Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 2007, 448, 791-794.	27.8	886
9	Impact of changes in diffuse radiation on the global land carbon sink. Nature, 2009, 458, 1014-1017.	27.8	858
10	The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 1999, 15, 183-203.	3.8	844
11	The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 2011, 4, 701-722.	3.6	804
12	The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet, The, 2018, 391, 581-630.	13.7	802
13	Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 2006, 439, 835-838.	27.8	727
14	Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 2004, 78, 137.	2.8	635
15	GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. Journal of Hydrometeorology, 2006, 7, 590-610.	1.9	616
16	Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 2013, 494, 341-344.	27.8	608
17	Strong present-day aerosol cooling implies a hot future. Nature, 2005, 435, 1187-1190.	27.8	577
18	Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature, 2007, 448, 1037-1041.	27.8	570

#	Article	IF	Citations
19	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
20	Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. Journal of Climate, 2013, 26, 6801-6843.	3.2	398
21	The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 2004, 78, 157.	2.8	387
22	Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 1997, 387, 796-799.	27.8	382
23	Explicit Representation of Subgrid Heterogeneity in a GCM Land Surface Scheme. Journal of Hydrometeorology, 2003, 4, 530-543.	1.9	365
24	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	12.9	358
25	Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 2015, 21, 1762-1776.	9.5	339
26	GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. Journal of Hydrometeorology, 2006, 7, 611-625.	1.9	337
27	Extending North Atlantic Oscillation reconstructions back to 1500. Atmospheric Science Letters, 2001, 2, 114-124.	1.9	332
28	A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology, 1998, 212-213, 79-94.	5.4	329
29	Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 2008, 453, 212-215.	27.8	326
30	Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology, 2005, 11, 154-166.	9.5	318
31	Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1166-1184.	3.4	314
32	The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Climate Dynamics, 2003, 21, 515-537.	3.8	309
33	The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2001, 2, 7-25.	1.9	294
34	The Lancet Countdown: tracking progress on health and climate change. Lancet, The, 2017, 389, 1151-1164.	13.7	292
35	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
36	Assessing uncertainties in a secondâ€generation dynamic vegetation model caused by ecological scale limitations. New Phytologist, 2010, 187, 666-681.	7.3	271

#	Article	IF	CITATIONS
37	An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017, 7, 340-344.	18.8	257
38	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 692-700.	1.6	256
39	Climate feedback from wetland methane emissions. Geophysical Research Letters, 2004, 31, .	4.0	245
40	Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 2018, 553, 319-322.	27.8	243
41	High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 2012, 7, 024002.	5. 2	241
42	Nonlinearities, Feedbacks and Critical Thresholds within the Earth's Climate System. Climatic Change, 2004, 65, 11-38.	3.6	229
43	No increase in global temperature variability despite changing regional patterns. Nature, 2013, 500, 327-330.	27.8	201
44	Progressing emergent constraints on future climate change. Nature Climate Change, 2019, 9, 269-278.	18.8	195
45	Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nature Communications, 2018, 9, 2938.	12.8	194
46	Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 2010, 187, 647-665.	7.3	189
47	The Sensitivity of Global Climate Model Simulations to the Representation of Soil Moisture Heterogeneity. Journal of Hydrometeorology, 2003, 4, 1265-1275.	1.9	157
48	The Carbon Cycle Response to ENSO: A Coupled Climate–Carbon Cycle Model Study. Journal of Climate, 2001, 14, 4113-4129.	3.2	151
49	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	1.9	150
50	Maximum entropy production in environmental and ecological systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1297-1302.	4.0	145
51	Towards quantifying uncertainty in predictions of Amazon †dieback'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1857-1864.	4.0	139
52	An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dynamics, 2000, 16, 575-586.	3.8	137
53	Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature, 2016, 538, 499-501.	27.8	137
54	Estimating the risk of Amazonian forest dieback. New Phytologist, 2010, 187, 694-706.	7.3	132

#	Article	IF	Citations
55	Quantifying future climate change. Nature Climate Change, 2012, 2, 403-409.	18.8	132
56	A Changing Climate for Prediction. Science, 2007, 317, 207-208.	12.6	128
57	Uncertainty in climate-carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 642-648.	1.6	127
58	The influence of terrestrial ecosystems on climate. Trends in Ecology and Evolution, 2006, 21, 254-260.	8.7	122
59	Comparing the Degree of Land–Atmosphere Interaction in Four Atmospheric General Circulation Models. Journal of Hydrometeorology, 2002, 3, 363-375.	1.9	118
60	Positive feedback between global warming and atmospheric CO2concentration inferred from past climate change. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	117
61	Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development, 2016, 9, 2415-2440.	3.6	115
62	Emergent constraints on climateâ€carbon cycle feedbacks in the CMIP5 Earth system models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 794-807.	3.0	113
63	A strategy for climate change stabilization experiments. Eos, 2007, 88, 217-221.	0.1	111
64	Modeling the volcanic signal in the atmospheric CO2record. Global Biogeochemical Cycles, 2001, 15, 453-465.	4.9	109
65	Emergent constraints on projections of declining primary production in the tropical oceans. Nature Climate Change, 2017, 7, 355-358.	18.8	108
66	Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology, 2004, 122, 215-227.	4.8	104
67	Strong carbon cycle feedbacks in a climate model with interactive CO2and sulphate aerosols. Geophysical Research Letters, 2003, 30, .	4.0	99
68	Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivityÂ(ECS) from historical warming in CMIP5 and CMIP6 models. Earth System Dynamics, 2020, 11, 737-750.	7.1	98
69	Excitability in ramped systems: the compost-bomb instability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1243-1269.	2.1	96
70	Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, 2020, 226, 1622-1637.	7.3	95
71	Contrasting simulated past and future responses of the Amazonian forest to atmospheric change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 539-547.	4.0	92
72	Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 553-565.	1.6	90

#	Article	IF	Citations
73	Illuminating the Modern Dance of Climate and CO ₂ . Science, 2008, 321, 1642-1644.	12.6	90
74	Impact of CO ₂ Doubling on the Asian Summer Monsoon. Journal of the Meteorological Society of Japan, 2000, 78, 421-439.	1.8	89
75	Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dynamics, 2005, 25, 189-204.	3.8	83
76	Amazon Basin climate under global warming: the role of the sea surface temperature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1753-1759.	4.0	81
77	Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and transâ€African migration of plants and animals. Global Change Biology, 2008, 14, 827-840.	9.5	80
78	An improved representation of physical permafrost dynamics in the JULES land-surface model. Geoscientific Model Development, 2015, 8, 1493-1508.	3.6	79
79	Overshooting tippingÂpoint thresholds in a changing climate. Nature, 2021, 592, 517-523.	27.8	79
80	Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 2004, 78, 177.	2.8	76
81	Simulated responses of potential vegetation to doubled-CO2 climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography, 2000, 9, 171-180.	5.8	74
82	Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nature Geoscience, 2018, 11, 568-573.	12.9	74
83	Modelling tropical forest responses to drought and El Ni $ ilde{A}$ \pm 0 with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170315.	4.0	69
84	On the significance of atmospheric CO2growth rate anomalies in 2002-2003. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	68
85	How positive is the feedback between climate change and the carbon cycle?. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 692.	1.6	67
86	Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytologist, 2018, 218, 1462-1477.	7.3	67
87	Characterizing GCM Land Surface Schemes to Understand Their Responses to Climate Change. Journal of Climate, 2000, 13, 3066-3079.	3.2	65
88	iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework. Biogeosciences, 2014, 11, 7291-7304.	3.3	65
89	An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel. Geophysical Research Letters, 2006, 33, .	4.0	63
90	Increased importance of methane reduction for a 1.5 degree target. Environmental Research Letters, 2018, 13, 054003.	5.2	61

#	Article	IF	Citations
91	Contrasting responses of a simple terrestrial ecosystem model to global change. Ecological Modelling, 2000, 134, 41-58.	2.5	59
92	Uncertainties linked to land-surface processes in climate change simulations. Climate Dynamics, 2000, 16, 949-961.	3.8	54
93	Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 603-613.	1.6	54
94	Impact of model developments on present and future simulations of permafrost in a global land-surface model. Cryosphere, 2015, 9, 1505-1521.	3.9	54
95	Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nature Climate Change, 2015, 5, 777-781.	18.8	53
96	Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth System Dynamics, 2016, 7, 525-533.	7.1	52
97	A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications, 2020, $11,5544$.	12.8	50
98	Highly contrasting effects of different climate forcing agents on terrestrial ecosystem services. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2026-2037.	3.4	49
99	Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geoscientific Model Development, 2018, 11, 2857-2873.	3.6	49
100	Use of statistical and neural network techniques to detect how stomatal conductance responds to changes in the local environment. Ecological Modelling, 1997, 97, 217-246.	2.5	45
101	Vegetation and climate variability: a GCM modelling study. Climate Dynamics, 2005, 24, 457-467.	3.8	45
102	Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 642.	1.6	43
103	Abrupt Changes: The Achilles' Heels of the Earth System. Environment, 2004, 46, 8-20.	1.4	43
104	Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 2014, 7, 796-800.	12.9	42
105	Soil carbon and climate change: from the Jenkinson effect to the compostâ€bomb instability. European Journal of Soil Science, 2011, 62, 5-12.	3.9	40
106	Modelling the effects of atmospheric CO2 on vegetation-atmosphere interactions. Agricultural and Forest Meteorology, 1995, 73, 285-295.	4.8	38
107	Modelling vegetation and the carbon cycle as interactive elements of the climate system. International Geophysics, 2002, , 259-279.	0.6	37
108	Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0. Geoscientific Model Development, 2016, 9, 2833-2852.	3.6	36

#	Article	IF	Citations
109	Quantifying, Understanding and Managing the Carbon Cycle in the Next Decades. Climatic Change, 2004, 67, 147-160.	3.6	33
110	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	3.6	32
111	Decadal global temperature variability increases strongly with climate sensitivity. Nature Climate Change, 2019, 9, 598-601.	18.8	31
112	Response of methane emission from arctic tundra to climatic change: results from a model simulation. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 301-309.	1.6	30
113	Emergent dynamics of the climate–economy system in the Anthropocene. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 868-886.	3.4	30
114	Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2. Atmospheric Science Letters, 2001, 2, 166-172.	1.9	29
115	Development of probability density functions for future South American rainfall. New Phytologist, 2010, 187, 682-693.	7.3	29
116	Global vegetation variability and its response to elevated CO ₂ , global warming, and climate variability – a study using the offline SSiB4/TRIFFID model and satellite data. Earth System Dynamics, 2019, 10, 9-29.	7.1	28
117	Emergent constraints on climate sensitivities. Reviews of Modern Physics, 2021, 93, .	45.6	28
118	Leaf area index identified as a major source of variabilityÂin modeled CO ₂ fertilization. Biogeosciences, 2018, 15, 6909-6925.	3.3	25
119	The impact of a simple representation of non-structural carbohydrates on the simulated response of tropical forests to drought. Biogeosciences, 2020, 17, 3589-3612.	3.3	24
120	Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources. Geophysical Monograph Series, 2009, , 273-292.	0.1	23
121	Amazonian climate: results and future research. Theoretical and Applied Climatology, 2004, 78, 187.	2.8	22
122	MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1355-1365.	4.0	22
123	Determining the optimal soil temperature scheme for atmospheric modelling applications. Boundary-Layer Meteorology, 2005, 114, 111-142.	2.3	21
124	Model complexity versus ensemble size: allocating resources for climate prediction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1087-1099.	3.4	21
125	Calibration of a land-surface model using data from primary forest sites in Amazonia. Theoretical and Applied Climatology, 2004, 78, 27.	2.8	20
126	Caribbean coral growth influenced by anthropogenic aerosol emissions. Nature Geoscience, 2013, 6, 362-366.	12.9	20

#	Article	IF	CITATIONS
127	Analysis, Integration and Modeling of the Earth System (AIMES): Advancing the post-disciplinary understanding of coupled human–environment dynamics in the Anthropocene. Anthropocene, 2015, 12, 99-106.	3.3	19
128	Emergent Constraints on Climate-Carbon Cycle Feedbacks. Current Climate Change Reports, 2019, 5, 275-281.	8.6	19
129	Investigation of North American vegetation variability under recent climate: A study using the SSiB4/TRIFFID biophysical/dynamic vegetation model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1300-1321.	3.3	18
130	Modelling long-term transpiration measurments from grassland in southern England. Agricultural and Forest Meteorology, 2000, 100, 309-322.	4.8	17
131	Engineering the climate. Physics World, 2009, 22, 24-27.	0.0	15
132	What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy?. Environmental Research Letters, 2008, 3, 044002.	5.2	14
133	Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation. Climate Dynamics, 2009, 32, 287-299.	3.8	14
134	Evapotranspiration. Geophysical Monograph Series, 2009, , 261-272.	0.1	14
135	Early warnings and missed alarms for abrupt monsoon transitions. Climate of the Past, 2015, 11, 1621-1633.	3.4	14
136	Equilibrium forest demography explains the distribution of tree sizes across North America. Environmental Research Letters, 2018, 13, 084019.	5.2	14
137	Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models. Geoscientific Model Development, 2020, 13, 4067-4089.	3.6	14
138	A quality-controlled global runoff data set (Reply). Nature, 2006, 444, E14-E15.	27.8	12
139	Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0  °C. Earth System Dynamics, 2017, 8, 617-626.	7.1	12
140	Evaluation of biospheric components in Earth system models using modern and palaeo-observations: the state-of-the-art. Biogeosciences, 2013, 10, 8305-8328.	3.3	11
141	Impacts of Climate Extremes in Brazil: The Development of a Web Platform for Understanding Long-Term Sustainability of Ecosystems and Human Health in Amazonia (PULSE-Brazil). Bulletin of the American Meteorological Society, 2016, 97, 1341-1346.	3.3	11
142	Consequences of the evolution of C4photosynthesis for surface energy and water exchange. Journal of Geophysical Research, 2007, 112 , .	3.3	10
143	Theoretical foundations of emergent constraints: relationships between climate sensitivity and global temperature variability in conceptual models. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	10
144	Modelling ecosystem adaptation and dangerous rates of global warming. Emerging Topics in Life Sciences, 2019, 3, 221-231.	2.6	10

#	Article	IF	CITATIONS
145	Resistive and viscous effects on z-pinch stability. Plasma Physics and Controlled Fusion, 1990, 32, 553-563.	2.1	9
146	Validation of demographic equilibrium theory against tree-size distributions and biomass density in Amazonia. Biogeosciences, 2020, 17, 1013-1032.	3.3	8
147	Cox et al. reply. Nature, 2018, 563, E10-E15.	27.8	8
148	Spatially resolved evaluation of Earth system models with satellite column-averaged CO ₂ . Biogeosciences, 2020, 17, 6115-6144.	3.3	8
149	Methane radiative forcing controls the allowable CO2 emissions for climate stabilization. Current Opinion in Environmental Sustainability, 2010, 2, 404-408.	6.3	7
150	Tipping points in open systems: bifurcation, noise-included and rate-dependent examples in the climate system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130098.	3.4	6
151	Regional variation in the effectiveness of methane-based and land-based climate mitigation options. Earth System Dynamics, 2021, 12, 513-544.	7.1	6
152	An improved description of soil hydraulic and thermal properties of arctic peatland for use in a GCM. Hydrological Processes, 2003, 17, 2611-2628.	2.6	5
153	How can the First ISLSCP Field Experiment contribute to present-day efforts to evaluate water stress in JULESv5.0?. Geoscientific Model Development, 2019, 12, 3207-3240.	3.6	4
154	The compost bomb instability in the continuum limit. European Physical Journal: Special Topics, 0, , 1.	2.6	4
155	Pressure-driven thin-shell instabilities in HBTX1C. Plasma Physics and Controlled Fusion, 1990, 32, 1321-1335.	2.1	3
156	Excitability in ramped systems: the compost-bomb instability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2733-2733.	2.1	3
157	Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere, 2022, 13, .	2.2	3
158	Modelling the past and the future fate of the Amazonian forest. , 2005, , 191-198.		1