C Sue Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NEUROENDOCRINE PERSPECTIVES ON SOCIAL ATTACHMENT AND LOVE. Psychoneuroendocrinology, 1998, 23, 779-818.	1.3	1,216
2	Physiological substrates of mammalian monogamy: The prairie vole model. Neuroscience and Biobehavioral Reviews, 1995, 19, 303-314.	2.9	592
3	Oxytocin Pathways and the Evolution of Human Behavior. Annual Review of Psychology, 2014, 65, 17-39.	9.9	482
4	The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster) Behavioral Neuroscience, 1999, 113, 1071-1079.	0.6	447
5	Oxytocin and sexual behavior. Neuroscience and Biobehavioral Reviews, 1992, 16, 131-144.	2.9	388
6	Sex differences in oxytocin and vasopressin: Implications for autism spectrum disorders?. Behavioural Brain Research, 2007, 176, 170-186.	1.2	385
7	Developmental consequences of oxytocin. Physiology and Behavior, 2003, 79, 383-397.	1.0	336
8	Oxytocin, vasopressin and sociality. Progress in Brain Research, 2008, 170, 331-336.	0.9	318
9	Oxytocin: Behavioral Associations and Potential as a Salivary Biomarker. Annals of the New York Academy of Sciences, 2007, 1098, 312-322.	1.8	264
10	Integrative Functions of Lactational Hormones in Social Behavior and Stress Management. Annals of the New York Academy of Sciences, 1997, 807, 164-174.	1.8	253
11	Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology, 2009, 34, 1542-1553.	1.3	207
12	ls Oxytocin "Nature's Medicineâ€ ? . Pharmacological Reviews, 2020, 72, 829-861.	7.1	190
13	Both oxytocin and vasopressin may influence alloparental behavior in male prairie voles. Hormones and Behavior, 2004, 45, 354-361.	1.0	160
14	Responses to Laboratory Psychosocial Stress in Postpartum Women. Psychosomatic Medicine, 2001, 63, 814-821.	1.3	158
15	Oxytocin has dose-dependent developmental effects on pair-bonding and alloparental care in female prairie voles. Hormones and Behavior, 2007, 52, 274-279.	1.0	148
16	Developmental exposure to vasopressin increases aggression in adult prairie voles. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12601-12604.	3.3	137
17	Consequences of Early Experiences and Exposure to Oxytocin and Vasopressin Are Sexually Dimorphic. Developmental Neuroscience, 2009, 31, 332-341.	1.0	132
18	Challenges for measuring oxytocin: The blind men and the elephant?. Psychoneuroendocrinology, 2019, 107, 225-231.	1.3	119

C SUE CARTER

#	Article	IF	CITATIONS
19	Chapter 17 Neuroendocrine and emotional changes in the post-partum period. Progress in Brain Research, 2001, 133, 241-249.	0.9	106
20	The Oxytocin–Vasopressin Pathway in the Context of Love and Fear. Frontiers in Endocrinology, 2017, 8, 356.	1.5	106
21	Oxytocin and Vasopressin Are Dysregulated in Williams Syndrome, a Genetic Disorder Affecting Social Behavior. PLoS ONE, 2012, 7, e38513.	1.1	92
22	Sex and species differences in plasma oxytocin using an enzyme immunoassay. Canadian Journal of Zoology, 2004, 82, 1194-1200.	0.4	91
23	Validation of salivary oxytocin and vasopressin as biomarkers in domestic dogs. Journal of Neuroscience Methods, 2018, 293, 67-76.	1.3	83
24	Early nurture epigenetically tunes the oxytocin receptor. Psychoneuroendocrinology, 2019, 99, 128-136.	1.3	83
25	Neuroendocrine and Behavioural Responses to Exposure to an Infant in Male Prairie Voles. Journal of Neuroendocrinology, 2012, 24, 874-886.	1.2	82
26	Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy. Frontiers in Genetics, 2015, 6, 243.	1.1	82
27	Oxytocin-augmented labor and risk for autism in males. Behavioural Brain Research, 2015, 284, 207-212.	1.2	67
28	Childbirth and symptoms of postpartum depression and anxiety: a prospective birth cohort study. Archives of Women's Mental Health, 2016, 19, 219-227.	1.2	67
29	Peripheral oxytocin administration buffers autonomic but not behavioral responses to environmental stressors in isolated prairie voles. Stress, 2012, 15, 149-161.	0.8	66
30	ls Oxytocin a Maternal–Foetal Signalling Molecule at Birth? Implications for Development. Journal of Neuroendocrinology, 2014, 26, 739-749.	1.2	60
31	Effects of Affiliative Human–Animal Interaction on Dog Salivary and Plasma Oxytocin and Vasopressin. Frontiers in Psychology, 2017, 8, 1606.	1.1	59
32	The Role of Oxytocin and Vasopressin in Attachment. Psychodynamic Psychiatry, 2017, 45, 499-517.	0.1	57
33	Central expression of c-Fos in neonatal male and female prairie voles in response to treatment with oxytocin. Developmental Brain Research, 2003, 143, 129-136.	2.1	56
34	The neurobiological causes and effects of alloparenting. Developmental Neurobiology, 2017, 77, 214-232.	1.5	55
35	Autonomic, behavioral and neuroendocrine correlates of paternal behavior in male prairie voles. Physiology and Behavior, 2014, 128, 252-259.	1.0	50
36	Behavioral and epigenetic consequences of oxytocin treatment at birth. Science Advances, 2019, 5, eaav2244.	4.7	50

C SUE CARTER

#	Article	IF	CITATIONS
37	Developmental programming of oxytocin through variation in early-life stress: Four meta-analyses and a theoretical reinterpretation. Clinical Psychology Review, 2021, 86, 101985.	6.0	48
38	A review of clinical trials of oxytocin in Prader–Willi syndrome. Current Opinion in Psychiatry, 2018, 31, 123-127.	3.1	47
39	Plasma oxytocin explains individual differences in neural substrates of social perception. Frontiers in Human Neuroscience, 2015, 9, 132.	1.0	41
40	Genetic, epigenetic, and environmental factors controlling oxytocin receptor gene expression. Clinical Epigenetics, 2021, 13, 23.	1.8	41
41	Endogenous Oxytocin, Vasopressin, and Aggression in Domestic Dogs. Frontiers in Psychology, 2017, 8, 1613.	1.1	35
42	Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei. Hormones and Behavior, 2016, 80, 82-91.	1.0	33
43	The chemistry of child neglect: Do oxytocin and vasopressin mediate the effects of early experience?. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18247-18248.	3.3	30
44	Personality, Behavior and Environmental Features Associated with OXTR Genetic Variants in British Mothers. PLoS ONE, 2014, 9, e90465.	1.1	29
45	Autonomic Substrates of the Response to Pups in Male Prairie Voles. PLoS ONE, 2013, 8, e69965.	1.1	29
46	BOLD fMRI in awake prairie voles: A platform for translational social and affective neuroscience. NeuroImage, 2016, 138, 221-232.	2.1	27
47	Acoustic features of prairie vole (Microtus ochrogaster) ultrasonic vocalizations covary with heart rate. Physiology and Behavior, 2015, 138, 94-100.	1.0	23
48	Interaction of oxytocin level and past depression may predict postpartum depressive symptom severity. Archives of Women's Mental Health, 2016, 19, 799-808.	1.2	21
49	Oxytocin and love: Myths, metaphors and mysteries. Comprehensive Psychoneuroendocrinology, 2022, 9, 100107.	0.7	21
50	Cardioacceleration in alloparents in response to stimuli from prairie vole pups: The significance of thermoregulation. Behavioural Brain Research, 2015, 286, 71-79.	1.2	16
51	The birth experience and subsequent maternal caregiving attitudes and behavior: a birth cohort study. Archives of Women's Mental Health, 2019, 22, 613-620.	1.2	16
52	Specificity of plasma oxytocin immunoassays: A comparison of commercial assays and sample preparation techniques using oxytocin knockout and wildtype mice. Psychoneuroendocrinology, 2021, 132, 105368.	1.3	16
53	Chronic social isolation enhances reproduction in the monogamous prairie vole (Microtus) Tj ETQq1 1 0.7843	14 rgBT /Ov	erlock 10 Tf 3
	Effects of postnatal estrogen manipulations on invenile allonarental behavior. Hormones and		

⁵⁴ Effects of postnatal estrogen manipulations on juvenile alloparental behavior. Hormones and Behavior, 2015, 75, 11-17.

1.0 13

C SUE CARTER

#	Article	IF	CITATIONS
55	Love and longevity: A Social Dependency Hypothesis. Comprehensive Psychoneuroendocrinology, 2021, 8, 100088.	0.7	10
56	Oxytocin and oxygen: the evolution of a solution to the â€~stress of life'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	8
57	Maternal and system characteristics, oxytocin administration practices, and cesarean birth rate. Birth, 2020, 47, 220-226.	1.1	6
58	Voluntary exercise facilitates pair-bonding in male prairie voles. Behavioural Brain Research, 2016, 296, 326-330.	1.2	5
59	Parenthood, Stress, and the Brain. Biological Psychiatry, 2011, 70, 804-805.	0.7	4
60	Evaluating the neuropeptide–social cognition link in ageing: the mediating role of basic cognitive skills. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	4
61	Neuropeptides influence expression of and capacity to form social bonds. Behavioral and Brain Sciences, 2005, 28, .	0.4	2
62	Social isolation induces depressionâ€ike behaviors and autonomic dysfunction in socially monogamous prairie voles. FASEB Journal, 2006, 20, A368.	0.2	1
63	Love and fear: A special issue. Comprehensive Psychoneuroendocrinology, 2022, , 100151.	0.7	1