Jiawen Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719635/publications.pdf

Version: 2024-02-01

236612 197535 2,543 62 25 49 citations h-index g-index papers 63 63 63 3666 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	External field-strengthened Ostwald nanowelding. Nano Research, 2022, 15, 4525-4535.	5.8	4
2	Bottom-up fabrication of three-dimensional nanoporous gold from Au nanoparticles using nanowelding. Science China Materials, 2022, 65, 2755-2762.	3 . 5	2
3	A High Capacity and Working Voltage Potassiumâ€Based Dual Ion Batteries. Energy and Environmental Materials, 2021, 4, 413-420.	7.3	23
4	Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta, 2021, 224, 121878.	2.9	62
5	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 6600-6608.	7.2	249
6	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 6674-6682.	1.6	23
7	Optimizing the energy levels and crystallinity of 2,2′-bithiophene-3,3′-dicarboximide-based polymer donors for high-performance non-fullerene organic solar cells. Journal of Materials Chemistry C, 2021, 9, 7575-7582.	2.7	9
8	Plasma Cleaning and Self-Limited Welding of Silver Nanowire Films for Flexible Transparent Conductors. ACS Applied Nano Materials, 2021, 4, 1664-1671.	2.4	14
9	Can "Hot Spots―Be Stable Enough for Surface-Enhanced Raman Scattering?. Journal of Physical Chemistry C, 2021, 125, 13443-13448.	1.5	11
10	Light welding Au nanoparticles assembled at water-air interface for monolayered nanoporous gold films with tunable electrocatalytic activity. Electrochimica Acta, 2020, 334, 135626.	2.6	9
11	Convenient synthesis of three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide for non-enzymatic electrochemical sensing of xanthine. Mikrochimica Acta, 2020, 187, 589.	2.5	12
12	Bulk Phase-Encoded Gold Nanoparticles: The Fourth-Generation Surface-Enhanced Raman Scattering Tag for Hg ²⁺ Ion Detection. Journal of Physical Chemistry C, 2020, 124, 19267-19272.	1.5	6
13	Mixed polyvinyl pyrrolidone hydrogel-mediated synthesis of high-quality Ag nanowires for high-performance transparent conductors. Journal of Materials Chemistry A, 2020, 8, 21062-21069.	5.2	8
14	Recent progresses on SnO ₂ anode materials for sodium storage. Journal Physics D: Applied Physics, 2020, 53, 353001.	1.3	18
15	Synthesis of gold nanoparticles, their interfacial self-assembly, and plasma welding: A solution-processable strategy to interdigital electrodes. Chemical Physics Letters, 2020, 754, 137603.	1.2	8
16	Overcurrent Electrodeposition of Fractal Plasmonic Black Gold with Broad-Band Absorption Properties for Excitation-Immune SERS. ACS Omega, 2020, 5, 8293-8298.	1.6	7
17	Hierarchically Porous Nâ€Doped Carbon Fibers as a Freeâ€Standing Anode for Highâ€Capacity Potassiumâ€Based Dualâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1901663.	10.2	128
18	Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale, 2019, 11, 15418-15439.	2.8	125

#	Article	IF	Citations
19	Rapid Electrochemical Cleaning Silver Nanowire Thin Films for High-Performance Transparent Conductors. Journal of the American Chemical Society, 2019, 141, 12251-12257.	6.6	37
20	Fe1-S/reduced graphene oxide composite as anode material for aqueous rechargeable Ni/Fe batteries. Journal of Alloys and Compounds, 2019, 800, 99-106.	2.8	13
21	Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Separation and Purification Technology, 2019, 224, 44-50.	3.9	64
22	Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization. Desalination, 2019, 464, 18-24.	4.0	75
23	Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459, 1-9.	4.0	29
24	Nickel-iron layered double hydroxides and reduced graphene oxide composite with robust lithium ion adsorption ability for high-capacity energy storage systems. Electrochimica Acta, 2019, 296, 190-197.	2.6	42
25	Holey Co, N-codoped graphene aerogel with in-plane pores and multiple active sites for efficient oxygen reduction. Electrochimica Acta, 2018, 269, 544-552.	2.6	29
26	Three-dimensional N- and S-codoped graphene hydrogel with in-plane pores for high performance supercapacitor. Microporous and Mesoporous Materials, 2018, 268, 260-267.	2.2	39
27	Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors. Journal of the American Chemical Society, 2018, 140, 193-199.	6.6	153
28	Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer. Journal of Physics Condensed Matter, 2018, 30, 185301.	0.7	12
29	Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered \hat{I}^3 -Cul. Npj 2D Materials and Applications, 2018, 2, .	3.9	34
30	Strong Fluorescence Enhancement with Silica-Coated Au Nanoshell Dimers. Plasmonics, 2017, 12, 263-269.	1.8	5
31	Light welding nanoparticles: from metal colloids to free-standing conductive metallic nanoparticle film. Science China Materials, 2017, 60, 39-48.	3.5	12
32	Surface-Enhanced Raman Scattering from Self-Assembled Film of Thiolated Peg-Modified Gold Nanoparticles. Journal of Applied Spectroscopy, 2017, 84, 407-412.	0.3	1
33	Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination. Nano Research, 2016, 9, 2458-2466.	5.8	110
34	Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array. Journal of Physics Condensed Matter, 2016, 28, 214003.	0.7	4
35	pH-induced aggregation growth of large Au nanoparticles from zwitterionic ligand-modified small Au nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 6-12.	2.3	3
36	Particle-dressed, Silica Shell-isolated Cavity Architectures for Surface-enhanced Raman Scattering. Chemistry Letters, 2015, 44, 989-991.	0.7	0

#	Article	IF	CITATIONS
37	Electroless deposition of Ag through-void arrays for integrated extraordinary optical transmission-based plasmonic sensing and surface-enhanced Raman scattering. Chemical Physics Letters, 2015, 636, 78-83.	1.2	6
38	Citrate-stabilized large Au nanoparticles: Seed-mediated synthesis and their size-optimized enhanced Raman at Pd overlayers. Chemical Physics Letters, 2015, 628, 91-95.	1.2	3
39	Fano Interference Between Higher Localized and Propagating Surface Plasmon Modes in Nanovoid Arrays. Plasmonics, 2015, 10, 71-76.	1.8	21
40	Facile synthesis of reduced graphene oxide-modified, nitrogen-doped carbon xerogel with enhanced electrochemical capacitance. Materials Chemistry and Physics, 2014, 148, 1171-1177.	2.0	8
41	Sub-5 nm nanobowl gaps electrochemically templated by SiO ₂ -coated Au nanoparticles as surface-enhanced Raman scattering hot spots. Chemical Communications, 2014, 50, 3958-3961.	2.2	10
42	Surface sol–gel growth of ultrathin SiO2 films on roughened Au electrodes: Extending borrowed SERS to a SERS inactive material. Chemical Physics Letters, 2014, 608, 35-39.	1.2	9
43	Surface-Enhanced Raman Scattering on Uniform Pd and Pt Films: From Ill-Defined to Structured Surfaces. Journal of Physical Chemistry C, 2013, 117, 24843-24850.	1.5	14
44	pH-Induced Concentration and Preservation of Zwitterion-Modified Gold Nanoparticles. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 319-326.	2.2	3
45	Salt- and pH-resistant gold nanoparticles decorated with mixed-charge zwitterionic ligands, and their pH-induced concentration behavior. RSC Advances, 2012, 2, 12648.	1.7	22
46	Salt-induced size-selective separation, concentration, and preservation of zwitterion-modified gold nanoparticles. RSC Advances, 2012, 2, 2671.	1.7	12
47	Sterically Stabilized, Surface-Enhanced Raman Scattering-Tagged Gold Nanorod Probes for Immunoassay. Acta Chimica Sinica, 2012, 70, 65.	0.5	0
48	Ligand exchange based water-soluble, surface-enhanced Raman scattering-tagged gold nanorod probes with improved stability. Chemical Physics Letters, 2011, 513, 241-245.	1.2	7
49	Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects. Nanotechnology, 2010, 21, 145608.	1.3	31
50	Correlating the Shape, Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of Gold Nanorods. Journal of Physical Chemistry C, 2009, 113, 10459-10464.	1.5	83
51	Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water–air and water–oil interfaces. Physical Chemistry Chemical Physics, 2009, 11, 6490.	1.3	65
52	Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Chemical Communications, 2007, , 4608.	2.2	47
53	Palladium-Coated Gold Nanoparticles with a Controlled Shell Thickness Used as Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry C, 2007, 111, 1105-1112.	1.5	159
54	Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discussions, 2006, 132, 159-170.	1.6	123

#	Article	IF	CITATIONS
55	Synthesis of Au@Pd core–shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chemical Physics Letters, 2005, 408, 354-359.	1.2	110
56	Tuning the SERS Activity of Au@Pd Core-shell Nanoparticles by Controlling the Thickness of the Pd Shell. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2005, 21, 825-828.	2.2	4
57	An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2004, 563, 121-131.	1.9	41
58	Theoretical Consideration on Preparing Silver Particle Films by Adsorbing Nanoparticles from Bulk Colloids to an Airâ^'Water Interface. Langmuir, 2004, 20, 8831-8838.	1.6	56
59	Simple Method for Preparing Controllably Aggregated Silver Particle Films Used as Surface-Enhanced Raman Scattering Active Substrates. Langmuir, 2002, 18, 6839-6844.	1.6	95
60	Aggregation of Silver Particles Trapped at an Airâ^'Water Interface for Preparing New SERS Active Substrates. Journal of Physical Chemistry B, 2002, 106, 6500-6506.	1.2	76
61	Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 2827-2834.	2.0	152
62	lodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor. Nano Research, 0 , 1 .	5.8	5