

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosome based miRNA delivery strategy for disease treatment. Chinese Chemical Letters, 2022, 33, 1693-1704.	4.8	32
2	Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews, 2022, 455, 214360.	9.5	29
3	Three-dimensional (3D) scaffolds as powerful weapons for tumor immunotherapy. Bioactive Materials, 2022, 17, 300-319.	8.6	21
4	Novel Glucose-Responsive Antioxidant Hybrid Hydrogel for Enhanced Diabetic Wound Repair. ACS Applied Materials & Interfaces, 2022, 14, 7680-7689.	4.0	102
5	Development of poly(<i>p</i> -coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials Science, 2022, 10, 2263-2274.	2.6	11
6	Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. Journal of Materials Chemistry B, 2022, 10, 2077-2096.	2.9	33
7	A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy. Nano Research, 2022, 15, 4544-4551.	5.8	10
8	A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Research, 2022, 15, 5305-5315.	5.8	42
9	Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules, 2022, 23, 1-19.	2.6	40
10	Recent Advances of Poly(ester amide)s-Based Biomaterials. Biomacromolecules, 2022, 23, 1892-1919.	2.6	24
11	Poly(β-cyclodextrin)/platinum prodrug supramolecular nano system for enhanced cancer therapy: Synthesis and in vivo study. Carbohydrate Polymers, 2022, 292, 119695.	5.1	12
12	Delivery of enzalutamide <i>via</i> nanoparticles for effectively inhibiting prostate cancer progression. Biomaterials Science, 2022, 10, 5187-5196.	2.6	6
13	Hydrogel Combined with Phototherapy in Wound Healing. Advanced Healthcare Materials, 2022, 11, .	3.9	65
14	Programmable therapeutic nanoscale covalent organic framework for photodynamic therapy and hypoxia-activated cascade chemotherapy. Acta Biomaterialia, 2022, 149, 297-306.	4.1	16
15	Egg white as a natural and safe biomaterial for enhanced cancer therapy. Chinese Chemical Letters, 2021, 32, 1737-1742.	4.8	27
16	pH-Sensitive nanogels for drug delivery in cancer therapy. Biomaterials Science, 2021, 9, 574-589.	2.6	105
17	Platinum-based chemotherapy <i>via</i> nanocarriers and co-delivery of multiple drugs. Biomaterials Science, 2021, 9, 6023-6036.	2.6	19
18	Biomedical applications of methionine-based systems. Biomaterials Science, 2021, 9, 1961-1973.	2.6	4

#	Article	IF	CITATIONS
19	Anti-inflammation biomaterial platforms for chronic wound healing. Biomaterials Science, 2021, 9, 4388-4409.	2.6	78
20	Advances of hydrogel dressings in diabetic wounds. Biomaterials Science, 2021, 9, 1530-1546.	2.6	154
21	Recent applications and strategies in nanotechnology for lung diseases. Nano Research, 2021, 14, 2067-2089.	5.8	49
22	Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	109
23	Construction of Intelligent Nano-Drug Delivery System for Targeting Extranodal Nasal Natural Killer/Thymus Dependent Lymphocyte. Journal of Biomedical Nanotechnology, 2021, 17, 487-500.	0.5	12
24	Edible Materials in Tissue Regeneration. Macromolecular Bioscience, 2021, 21, e2100114.	2.1	13
25	Nanomaterial-Facilitated Cyclin-Dependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction. ACS Nano, 2021, 15, 14744-14755.	7.3	10
26	Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydrate Polymers, 2021, 266, 118097.	5.1	70
27	Nanoparticle-Mediated Inhibition of Mitochondrial Glutaminolysis to Amplify Oxidative Stress for Combination Cancer Therapy. Nano Letters, 2021, 21, 7569-7578.	4.5	37
28	Nanomedicine as a promising strategy for the theranostics of infectious diseases. Journal of Materials Chemistry B, 2021, 9, 7878-7908.	2.9	12
29	Advances and impact of arginine-based materials in wound healing. Journal of Materials Chemistry B, 2021, 9, 6738-6750.	2.9	20
30	<i>In vivo</i> metabolizable branched poly(ester amide) based on inositol and amino acids as a drug nanocarrier for cancer therapy. Biomaterials Science, 2021, 9, 6555-6567.	2.6	4
31	Amino Acid- and Growth Factor-Based Multifunctional Nanocapsules for the Modulation of the Local Microenvironment in Tissue Engineering. ACS Applied Materials & Interfaces, 2021, 13, 2165-2178.	4.0	29
32	Applications of oxidized alginate in regenerative medicine. Journal of Materials Chemistry B, 2021, 9, 2785-2801.	2.9	33
33	Application of metal-based biomaterials in wound repair. Engineered Regeneration, 2021, 2, 137-153.	3.0	25
34	One-Step and Facile Synthesis of Poly(phenylalanine) as a Robust Drug Carrier for Enhanced Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 49658-49670.	4.0	4
35	Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. Chinese Chemical Letters, 2020, 31, 19-27.	4.8	49
36	Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. Chinese Chemical Letters, 2020, 31, 1612-1615.	4.8	54

#	Article	IF	CITATIONS
37	Galactose-modified enzymatic synthesis of poly(amino-co-ester) micelles for co-delivery miR122 and sorafenib to inhibit hepatocellular carcinoma development. Chinese Chemical Letters, 2020, 31, 1173-1177.	4.8	37
38	Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale, 2020, 12, 413-436.	2.8	49
39	Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering. Carbohydrate Polymers, 2020, 230, 115640.	5.1	54
40	Cysteineâ€Based Biomaterials as Drug Nanocarriers. Advanced Therapeutics, 2020, 3, 1900142.	1.6	5
41	Efficient delivery of BRD4 inhibitor by glutathione-sensitive nanoparticle to suppress gallbladder cancer through inhibiting NF-κB signaling. Applied Materials Today, 2020, 21, 100849.	2.3	6
42	Hemostatic nanotechnologies for external and internal hemorrhage management. Biomaterials Science, 2020, 8, 4396-4412.	2.6	49
43	Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomaterials Science, 2020, 8, 4692-4711.	2.6	9
44	<i>In situ</i> formation of injectable hydrogels for chronic wound healing. Journal of Materials Chemistry B, 2020, 8, 8768-8780.	2.9	105
45	Overcoming therapeutic failure in osteosarcoma <i>via</i> Apatinib-encapsulated hydrophobic poly(ester amide) nanoparticles. Biomaterials Science, 2020, 8, 5888-5899.	2.6	18
46	Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. Journal of Materials Chemistry B, 2020, 8, 8781-8793.	2.9	21
47	Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomaterials Science, 2020, 8, 5804-5823.	2.6	50
48	Redoxâ€Responsive Selfâ€Assembled Nanoparticles for Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2000605.	3.9	59
49	A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-to-bone interface healing. Biomaterials Science, 2020, 8, 3649-3663.	2.6	23
50	Nanostructure Engineering by Simple Tuning of Lipid Combinations. Angewandte Chemie, 2020, 132, 6308-6311.	1.6	2
51	Injectable baicalin/F127 hydrogel with antioxidant activity for enhanced wound healing. Chinese Chemical Letters, 2020, 31, 1817-1821.	4.8	85
52	Tofu as excellent scaffolds for potential bone regeneration. Chinese Chemical Letters, 2020, 31, 3190-3194.	4.8	39
53	Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Advanced Healthcare Materials, 2020, 9, e1901502.	3.9	373
54	Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomaterials Science, 2020, 8, 1885-1896.	2.6	80

#	Article	IF	CITATIONS
55	Nanostructure Engineering by Simple Tuning of Lipid Combinations. Angewandte Chemie - International Edition, 2020, 59, 6249-6252.	7.2	19
56	Nanomedicine – a promising therapy for hematological malignancies. Biomaterials Science, 2020, 8, 2376-2393.	2.6	28
57	Tofu-Incorporated Hydrogels for Potential Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 3037-3045.	2.6	13
58	Progress in arginine-based gene delivery systems. Journal of Materials Chemistry B, 2020, 8, 5564-5577.	2.9	39
59	Multistage Nanoparticle Delivery System—A New Approach to Cancer Therapeutics. Journal of Biomedical Nanotechnology, 2020, 16, 1570-1587.	0.5	10
60	Polydopamine/puerarin nanoparticle-incorporated hybrid hydrogels for enhanced wound healing. Biomaterials Science, 2019, 7, 4230-4236.	2.6	89
61	Cysteine-based redox-responsive nanoparticles for small-molecule agent delivery. Biomaterials Science, 2019, 7, 4218-4229.	2.6	25
62	Natural Polymerâ€Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Advanced Healthcare Materials, 2019, 8, e1900670.	3.9	178
63	Halloysite Nanotube Based Scaffold for Enhanced Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 4037-4047.	2.6	61
64	Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 5384-5391.	2.6	39
65	Synthesis, characterization, and formulation of poly-puerarin as a biodegradable and biosafe drug delivery platform for anti-cancer therapy. Biomaterials Science, 2019, 7, 2152-2164.	2.6	20
66	Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. Nano Letters, 2019, 19, 3256-3266.	4.5	78
67	H ₂ O ₂ -responsive nano-prodrug for podophyllotoxin delivery. Biomaterials Science, 2019, 7, 2491-2498.	2.6	40
68	Poly(cystine–PCL) based pH/redox dual-responsive nanocarriers for enhanced tumor therapy. Biomaterials Science, 2019, 7, 1962-1972.	2.6	37
69	Three-Dimensional Co-Culture of Peripheral Blood-Derived Mesenchymal Stem Cells and Endothelial Progenitor Cells for Bone Regeneration. Journal of Biomedical Nanotechnology, 2019, 15, 248-260.	0.5	21
70	Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomaterials Science, 2019, 7, 2023-2036.	2.6	122
71	Poly(Ferulic Acid) with an Anticancer Effect as a Drug Nanocarrier for Enhanced Colon Cancer Therapy. Advanced Functional Materials, 2019, 29, 1808646.	7.8	93
72	Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B, 2019, 7, 7075-7089.	2.9	95

#	Article	IF	CITATIONS
73	Black Phosphorus Hydrogel Scaffolds Enhance Bone Regeneration via a Sustained Supply of Calcium-Free Phosphorus. ACS Applied Materials & Interfaces, 2019, 11, 2908-2916.	4.0	189
74	Biotherapeutic Nanoparticles of Poly(Ferulic Acid) Delivering Doxorubicin for Cancer Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1734-1743.	0.5	32
75	Tofu-Based Hybrid Hydrogels with Antioxidant and Low Immunogenicity Activity for Enhanced Wound Healing. Journal of Biomedical Nanotechnology, 2019, 15, 1371-1383.	0.5	38
76	Red Jujube-Incorporated Gelatin Methacryloyl (GelMA) Hydrogels with Anti-Oxidation and Immunoregulation Activity for Wound Healing. Journal of Biomedical Nanotechnology, 2019, 15, 1357-1370.	0.5	59
77	Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Current Topics in Medicinal Chemistry, 2019, 19, 57-73.	1.0	33
78	Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discovery Today, 2018, 23, 1126-1138.	3.2	54
79	Evaluation of tofu as a potential tissue engineering scaffold. Journal of Materials Chemistry B, 2018, 6, 1328-1334.	2.9	26
80	Effect of taste masking technology on fast dissolving oral film: dissolution rate and bioavailability. Nanotechnology, 2018, 29, 304001.	1.3	17
81	Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomaterials Science, 2018, 6, 125-135.	2.6	33
82	Redoxâ€Responsive Nanoparticleâ€Mediated Systemic RNAi for Effective Cancer Therapy. Small, 2018, 14, e1802565.	5.2	85
83	Biomimetic Shells Endow Sub-50 nm Nanoparticles with Ultrahigh Paclitaxel Payloads for Specific and Robust Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 33976-33985.	4.0	28
84	Poly(ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery. Journal of Materials Chemistry B, 2018, 6, 6723-6730.	2.9	37
85	Arginine-based poly(ester amide) nanoparticle platform: From structure–property relationship to nucleic acid delivery. Acta Biomaterialia, 2018, 74, 180-191.	4.1	61
86	Significant Suppression of Non-small-cell Lung Cancer by Hydrophobic Poly(ester amide) Nanoparticles with High Docetaxel Loading. Frontiers in Pharmacology, 2018, 9, 118.	1.6	24
87	Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy. Frontiers in Pharmacology, 2018, 9, 582.	1.6	26
88	Bioreactor Synergy with 3D Scaffolds: New Era for Stem Cells Culture. ACS Applied Bio Materials, 2018, 1, 193-209.	2.3	22
89	BAPTA-AM Nanoparticle for the Curing of Acute Kidney Injury Induced by Ischemia/Reperfusion. Journal of Biomedical Nanotechnology, 2018, 14, 868-883.	0.5	23
90	Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polymer Chemistry, 2018, 9, 3436-3449.	1.9	155

#	Article	IF	CITATIONS
91	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Letters, 2018, 18, 4618-4625.	4.5	173
92	Advances in Long-Circulating Drug Delivery Strategy. Current Drug Metabolism, 2018, 19, 750-758.	0.7	20
93	Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS Nano, 2017, 11, 2618-2627.	7.3	172
94	CXCR4-Targeted and Redox Responsive Dextrin Nanogel for Metastatic Breast Cancer Therapy. Biomacromolecules, 2017, 18, 1793-1802.	2.6	62
95	The scaffold microenvironment for stem cell based bone tissue engineering. Biomaterials Science, 2017, 5, 1382-1392.	2.6	109
96	Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomaterials Science, 2017, 5, 2369-2380.	2.6	80
97	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Letters, 2017, 17, 6790-6801.	4.5	143
98	Multifunctional nanoparticles for co-delivery of paclitaxel and carboplatin against ovarian cancer by inactivating the JMJD3-HER2 axis. Nanoscale, 2017, 9, 13142-13152.	2.8	46
99	A Novel Reactive Oxygen Species Triggered Polymeric Nanoplatform for Controlled Drug Delivery and Cancer Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 513-521.	0.5	14
100	Osteocytes regulate osteoblast differentiation and osteoclast activity through Interleukin-6 under mechanical loading. RSC Advances, 2017, 7, 50200-50209.	1.7	18
101	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery <i>In Vitro</i> and <i>In Vivo</i> . Theranostics, 2017, 7, 1990-2002.	4.6	81
102	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie - International Edition, 2016, 55, 3309-3312.	7.2	121
103	Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis. ACS Nano, 2016, 10, 5280-5292.	7.3	170
104	Polymeric nanoparticles for colon cancer therapy: overview and perspectives. Journal of Materials Chemistry B, 2016, 4, 7779-7792.	2.9	93
105	Ultraâ€pHâ€Responsive and Tumorâ€Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Antiâ€Cancer Efficacy. Angewandte Chemie, 2016, 128, 7207-7210.	1.6	10
106	Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7750-7755.	3.3	73
107	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie, 2016, 128, 3370-3373.	1.6	10
108	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663.	23.0	2,018

#	Article	IF	CITATIONS
109	Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy. Biomaterials, 2016, 76, 238-249.	5.7	88
110	Nanotechnology for protein delivery: Overview and perspectives. Journal of Controlled Release, 2016, 240, 24-37.	4.8	294
111	Hydrophobic Cysteine Poly(disulfide)â€based Redoxâ€Hypersensitive Nanoparticle Platform for Cancer Theranostics. Angewandte Chemie - International Edition, 2015, 54, 9218-9223.	7.2	164
112	Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7779-7784.	3.3	170
113	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	13.5	719
114	Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications. Acta Biomaterialia, 2014, 10, 3098-3107.	4.1	25
115	Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66, 2-25.	6.6	2,275
116	Irisin ERKs the Fat. Diabetes, 2014, 63, 381-383.	0.3	30
117	Development of a biocompatible and biodegradable hybrid hydrogel platform for sustained release of ionic drugs. Journal of Materials Chemistry B, 2014, 2, 6660-6668.	2.9	64
118	Nanomedicine in the management of microbial infection – Overview and perspectives. Nano Today, 2014, 9, 478-498.	6.2	286
119	Development of Multinuclear Polymeric Nanoparticles as Robust Protein Nanocarriers. Angewandte Chemie - International Edition, 2014, 53, 8975-8979.	7.2	122
120	Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10287-10292.	3.3	234
121	Hybrid lipid–polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e897-e900.	1.7	76
122	Water insoluble cationic poly(ester amide)s: synthesis, characterization and applications. Journal of Materials Chemistry B, 2013, 1, 353-360.	2.9	74
123	Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18638-18643.	3.3	302
124	A novel family of biodegradable hybrid hydrogels from arginine-based poly(ester amide) and hyaluronic acid precursors. Soft Matter, 2013, 9, 3965.	1.2	46
125	A novel PGCâ€1Ã; isoform induced by resistance training regulates skeletal muscle hypertrophy. FASEB Journal, 2013, 27, 940.18.	0.2	1
126	Biodegradable arginine-based poly(ether ester amide)s as a non-viral DNA delivery vector and their structure–function study. Journal of Materials Chemistry, 2012, 22, 18983.	6.7	71

#	Article	IF	CITATIONS
127	Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 2012, 150, 366-376.	13.5	2,740
128	Block copolymer of poly(ester amide) and polyesters: Synthesis, characterization, and in vitro cellular response. Acta Biomaterialia, 2012, 8, 4314-4323.	4.1	60
129	Cationic Hybrid Hydrogels from Aminoâ€Acidâ€Based Poly(ester amide): Fabrication, Characterization, and Biological Properties. Advanced Functional Materials, 2012, 22, 3815-3823.	7.8	90
130	The Unfolded Protein Response Mediates Adaptation to Exercise in Skeletal Muscle through a PGC-1α/ATF6α Complex. Cell Metabolism, 2011, 13, 160-169.	7.2	250
131	Synthesis and characterization of ionic charged water soluble arginine-based poly(ester amide). Journal of Materials Science: Materials in Medicine, 2011, 22, 469-479.	1.7	42
132	Synthesis and characterization of functionalized water soluble cationic poly(ester amide)s. Journal of Polymer Science Part A, 2010, 48, 3758-3766.	2.5	39
133	Synthesis and Characterization of Biodegradable Poly(ester amide)s with Pendant Amine Functional Groups and In Vitro Cellular Response. Biomacromolecules, 2009, 10, 3037-3047.	2.6	78
134	Transfection of Vascular Smooth Muscle Cells with Novel Biodegradable Arginine Based Poly(esterâ€amide)s, FASFB Journal, 2008, 22, 1056, 1,	0.2	0