Wei Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271925/publications.pdf

Version: 2024-02-01

34	550	12	22
papers	citations	h-index	g-index
37	37	37	440 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11480-11489.	7.1	77
2	Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Optics Express, 2019, 27, 33504.	3.4	55
3	Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Theranostics, 2021, 11, 1982-1990.	10.0	54
4	Machine learning guided rapid focusing with sensor-less aberration corrections. Optics Express, 2018, 26, 30162.	3.4	50
5	The divided aperture technique for microscopy through scattering media. Optics Express, 2008, 16, 17031.	3.4	37
6	Improved spatial resolution in fluorescence focal modulation microscopy. Optics Letters, 2009, 34, 3508.	3.3	31
7	Optimization of axial resolution in a confocal microscope with D-shaped apertures. Applied Optics, 2009, 48, 3998.	2.1	24
8	Focal modulation microscopy with annular apertures: A numerical study. Journal of Biophotonics, 2010, 3, 476-484.	2.3	24
9	Organizational principles of amygdalar input-output neuronal circuits. Molecular Psychiatry, 2021, 26, 7118-7129.	7.9	21
10	Machine learning based adaptive optics for doughnut-shaped beam. Optics Express, 2019, 27, 16871.	3.4	20
11	Optical Brain Imaging: A Powerful Tool for Neuroscience. Neuroscience Bulletin, 2017, 33, 95-102.	2.9	16
12	Two-photon focal modulation microscopy in turbid media. Applied Physics Letters, 2011, 99, .	3.3	12
13	Twoâ€photon focal modulation microscopy for highâ€resolution imaging in deep tissue. Journal of Biophotonics, 2019, 12, e201800247.	2.3	12
14	Application of artificial neural networks in detection and diagnosis of gastrointestinal and liver tumors. World Journal of Clinical Cases, 2020, 8, 3971-3977.	0.8	11
15	Polarization effects in 4Pi microscopy. Micron, 2011, 42, 353-359.	2.2	10
16	Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures. Optics Communications, 2011, 284, 1475-1480.	2.1	10
17	A biocompatible two-photon absorbing fluorescent mitochondrial probe for deep <i>in vivo</i> bioimaging. Journal of Materials Chemistry B, 2022, 10, 887-898.	5.8	9
18	Improvements in confocal microscopy imaging using serrated divided apertures. Optics Communications, 2009, 282, 3846-3849.	2.1	8

#	Article	IF	CITATIONS
19	Edge enhancement for in-phase focal modulation microscope. Applied Optics, 2009, 48, 6290.	2.1	8
20	Divided-aperture technique for fluorescence confocal microscopy through scattering media. Applied Optics, 2010, 49, 752.	2.1	8
21	Large field of view correction by using conjugate adaptive optics with multiple guide stars. Journal of Biophotonics, 2019, 12, e201800225.	2.3	7
22	Simplifying the detection of optical distortions by machine learning. Journal of Innovative Optical Health Sciences, 2020, 13 , .	1.0	7
23	Stripe-shaped apertures in confocal microscopy. Applied Optics, 2016, 55, 7613.	2.1	6
24	Combining real-time elastography with fine-needle aspiration biopsy to identify malignant thyroid nodules. Journal of International Medical Research, 2020, 48, 030006052097602.	1.0	6
25	Multidither coherent optical adaptive technique for deep tissue two-photon microscopy. Journal of Innovative Optical Health Sciences, 2019, 12, .	1.0	5
26	Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1277-1288.	2.6	5
27	Modeling phase functions in biological tissue. Optics Letters, 2008, 33, 1599.	3.3	4
28	Aberration corrections of doughnut beam by adaptive optics in the turbid medium. Journal of Biophotonics, 2019, 12, e201900125.	2.3	3
29	Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing. Journal of Biophotonics, 2020, 13, e201900245.	2.3	3
30	Adaptive optics for structured illumination microscopy based on deep learning. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 622-631.	1.5	3
31	Optimization for imaging through scattering media for confocal microscopes with divided elliptical apertures. Journal of Biophotonics, 2018, 11, e201700293.	2.3	2
32	Improvements with divided cosine-shaped apertures in confocal microscopy. Optics Communications, 2019, 442, 71-76.	2.1	2
33	VISUALIZATION OF BONE MATERIAL MAP WITH NOVEL MATERIAL SENSITIVE TRANSFER FUNCTIONS (3C2 Bone) To and Technology in Biomechanics, 2007, 2007.3, S211.	j ETQq1 1 o.o	0.784314 O
34	LIGHT SCATTERING BY RANDOM NON-SPHERICAL PARTICLES WITH ROUGH SURFACE IN BIOLOGICAL TISSUE AND CELLS(3A2 Cellular & Engineering & Engineering & Engineering & Engineering Science and Technology in Biomechanics, 2007, 2007.3, S171.	0.0	0