Yan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719189/publications.pdf

Version: 2024-02-01

175 papers	8,411 citations	47006 47 h-index	82 g-index
177	177 docs citations	177	7400
all docs		times ranked	citing authors

#	Article	IF	Citations
1	Effect of hydrodynamic conditions on the formation and structure of aerobic granular sludge performing enhanced biological phosphorus removal. Water and Environment Journal, 2022, 36, 56-66.	2.2	4
2	Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions. Bioresource Technology, 2022, 344, 126248.	9.6	45
3	Effect of sludge retention time on microbial succession and assembly in thermal hydrolysis pretreated sludge digesters: Deterministic versus stochastic processes. Water Research, 2022, 209, 117900.	11.3	30
4	Mainstream nitrogen removal in membrane aerated biofilm reactor at minimal lumen pressure. Science of the Total Environment, 2022, 818, 151758.	8.0	7
5	NOB suppression strategies in a mainstream membrane aerated biofilm reactor under exceptionally low lumen pressure. Chemosphere, 2022, 290, 133386.	8.2	16
6	Reduction of refractory Maillard reaction products by Fe3+ during thermal hydrolysis pretreatment and enhanced sludge biodegradability. Journal of Hazardous Materials, 2022, 430, 128400.	12.4	15
7	Effect of Sodium on Methanogens in a Two-Stage Anaerobic System. Applied Sciences (Switzerland), 2022, 12, 956.	2.5	5
8	Mitigation of inhibitory effect of THP-AD centrate on partial nitritation and anammox: Insights into ozone pretreatment. Journal of Hazardous Materials, 2022, 431, 128599.	12.4	4
9	Responses of mesophilic anaerobic sludge microbiota to thermophilic conditions: Implications for start-up and operation of thermophilic THP-AD systems. Water Research, 2022, 216, 118332.	11.3	17
10	Metagenomic assembled genomes unravel purple nonâ€'sulfur bacteria (PNSB) involved in integrating C, N, P biotransformation. Science of the Total Environment, 2022, 830, 154591.	8.0	4
11	Iron-based advanced oxidation processes for enhancing sludge dewaterability: State of the art, challenges, and sludge reuse. Water Research, 2022, 218, 118499.	11.3	56
12	Integrated thermal hydrolysis pretreated anaerobic digestion centrate and municipal wastewater treatment via partial nitritation/anammox process: A promising approach to alleviate inhibitory effects and enhance nitrogen removal. Bioresource Technology, 2022, 356, 127310.	9.6	8
13	A potential phosphorus fertilizer to alleviate the coming "phosphorus crisis―biochar derived from enhanced biological phosphorus removal sludge. Science of the Total Environment, 2022, 838, 156559.	8.0	10
14	Single-cell protein production using anaerobic digestate. , 2022, , 343-358.		0
15	Genome-centric metagenomics analysis revealed the metabolic function of abundant microbial communities in thermal hydrolysis-assisted thermophilic anaerobic digesters under propionate stress. Bioresource Technology, 2022, 360, 127574.	9.6	12
16	Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: A review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2260-2293.	12.8	86
17	Interaction of perfluorooctanoic acid with extracellular polymeric substances - Role of protein. Journal of Hazardous Materials, 2021, 401, 123381.	12.4	49
18	Effects of Fe(II) on anammox community activity and physiologic response. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	23

#	Article	IF	CITATIONS
19	Insights into thermal hydrolyzed sludge liquor - Identification of plant-growth-promoting compounds. Journal of Hazardous Materials, 2021, 403, 123650.	12.4	12
20	Integrated powdered activated carbon and quorum quenching strategy for biofouling control in industrial wastewater membrane bioreactor. Journal of Cleaner Production, 2021, 279, 123551.	9.3	15
21	Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere, 2021, 263, 128283.	8.2	55
22	<i>Defluviicoccus vanus</i> Glycogen-Accumulating Organisms (<i>Dv</i> GAOs) Are Less Competitive Than Polyphosphate-Accumulating Organisms (PAOs) at High Temperature. ACS ES&T Water, 2021, 1, 319-327.	4.6	11
23	In-situ alkaline enhanced two-stage anaerobic digestion system for waste cooking oil and sewage sludge co-digestion. Waste Management, 2021, 120, 221-229.	7.4	15
24	A novel strategy for enhancing anaerobic biodegradation of an anthraquinone dye reactive blue 19 with resuscitation-promoting factors. Chemosphere, 2021, 263, 127922.	8.2	44
25	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	12.8	104
26	Surveillance of Wastewater for Early Epidemic Prediction (SWEEP): Environmental and health security perspectives in the post COVID-19 Anthropocene. Environmental Research, 2021, 195, 110831.	7.5	30
27	Measure microbial activity driven oxygen transfer in membrane aerated biofilm reactor from supply side. Environmental Research, 2021, 195, 110845.	7.5	6
28	Pathways and Mechanisms of Single-Cell Protein Production: Carbon and Nutrient Transformation. ACS ES&T Water, 2021, 1, 1313-1320.	4.6	1
29	Butyrate can support PAOs but not GAOs in tropical climates. Water Research, 2021, 193, 116884.	11.3	17
30	Thermal hydrolyzed food waste liquor as liquid organic fertilizer. Science of the Total Environment, 2021, 775, 145786.	8.0	22
31	Pyrite assisted peroxymonosulfate sludge conditioning: Uncover triclosan transformation during treatment. Journal of Hazardous Materials, 2021, 413, 125368.	12.4	23
32	Biomass enhances the reduction of oxidized pellets with carbon monoxide. Bioresource Technology, 2021, 331, 124973.	9.6	5
33	Viable but Nonculturable State of Yeast <i>Candida</i> sp. Strain LN1 Induced by High Phenol Concentrations. Applied and Environmental Microbiology, 2021, 87, e0111021.	3.1	45
34	Water and environment innovation in Singapore and China. Water and Environment Journal, 2021, 35, 863-864.	2.2	0
35	Challenges of THP-AD centrate treatment using partial nitritation-anammox (PN/A) – inhibition, biomass washout, low alkalinity, recalcitrant and more. Water Research, 2021, 203, 117555.	11.3	27
36	Elemental sulfur as electron donor and/or acceptor: Mechanisms, applications and perspectives for biological water and wastewater treatment. Water Research, 2021, 202, 117373.	11.3	80

#	Article	IF	Citations
37	Bayesian LSTM With Stochastic Variational Inference for Estimating Model Uncertainty in Processâ€Based Hydrological Models. Water Resources Research, 2021, 57, e2021WR029772.	4.2	29
38	Triclosan transformation and impact on an elemental sulfur-driven sulfidogenic process. Chemical Engineering Journal, 2021, 421, 129634.	12.7	12
39	Metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Science of the Total Environment, 2021, 791, 148096.	8.0	31
40	Unveiling the role of activated carbon on hydrolysis process in anaerobic digestion. Bioresource Technology, 2020, 296, 122366.	9.6	28
41	Biotransformation of phosphorus in enhanced biological phosphorus removal sludge biochar. Water Research, 2020, 169, 115255.	11.3	18
42	Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm – Sulfamethoxazole. Chemical Engineering Journal, 2020, 384, 123238.	12.7	36
43	Observation of the interactions of silver nanoparticles (AgNPs) mediated by acid in the aquatic matrices using in-situ liquid cell transmission electron microscopy. Analytica Chimica Acta, 2020, 1104, 47-52.	5.4	1
44	Interactive influence of extracellular polymeric substances (EPS) and electrolytes on the colloidal stability of silver nanoparticles. Environmental Science: Nano, 2020, 7, 186-197.	4.3	22
45	Micro–level evaluation of organic compounds transformation in anaerobic digestion under feast and famine conditions assisted by iron–based materials – Revealing the true mechanism of AD enhancement. Environment International, 2020, 135, 105362.	10.0	14
46	Protein recovery from sludge: A review. Journal of Cleaner Production, 2020, 249, 119373.	9.3	47
47	Distinct mechanisms in the heteroaggregation of silver nanoparticles with mineral and microbial colloids. Water Research, 2020, 170, 115332.	11.3	18
48	Organics transformation and energy production potential in a high rate A-stage system: A demo-scale study. Bioresource Technology, 2020, 295, 122300.	9.6	20
49	Enhanced volatile fatty acid production and microbial population analysis in anaerobic treatment of high strength wastewater. Journal of Water Process Engineering, 2020, 33, 101058.	5.6	35
50	Primary sludge as solid carbon source for biological denitrification: System optimization at micro-level. Environmental Research, 2020, 191, 110160.	7.5	16
51	Quorum quenching altered microbial diversity and activity of anaerobic membrane bioreactor (AnMBR) and enhanced methane generation. Bioresource Technology, 2020, 315, 123862.	9.6	32
52	Biological conversion of sulfamethoxazole in an autotrophic denitrification system. Water Research, 2020, 185, 116156.	11.3	50
53	Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: A critical review and update. Science of the Total Environment, 2020, 730, 139034.	8.0	70
54	A Specious Correlation between Sludge Rheology and Dewaterability. Environmental Science & Eamp; Technology, 2020, 54, 5928-5930.	10.0	11

#	Article	IF	Citations
55	Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Research, 2020, 182, 115976.	11.3	40
56	Development of a denitrification system using primary sludge as solid carbon source – Potential to couple with anammox process. Science of the Total Environment, 2020, 737, 140315.	8.0	17
57	The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). Environmental Research, 2020, 188, 109729.	7.5	20
58	Mechanistic insights into a novel nitrilotriacetic acid-FeO and CaO2 process for efficient anaerobic digestion sludge dewatering at near-neutral pH. Water Research, 2020, 184, 116149.	11.3	43
59	Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition – Reevaluate the role of conductive materials. Water Research, 2020, 183, 116094.	11.3	61
60	Profiling of amino acids and their interactions with proteinaceous compounds for sewage sludge dewatering by Fenton oxidation treatment. Water Research, 2020, 175, 115645.	11.3	45
61	Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge. Water Research, 2020, 171, 115476.	11.3	24
62	The selective pressure of quorum quenching on microbial communities in membrane bioreactors. Chemosphere, 2020, 247, 125953.	8.2	25
63	Effective biological nitrogen process and nitrous oxide emission characteristics for the treatment of landfill leachate with low carbon-to-nitrogen ratio. Journal of Cleaner Production, 2020, 268, 122289.	9.3	16
64	New direction in biological nitrogen removal from industrial nitrate wastewater via anammox. Applied Microbiology and Biotechnology, 2019, 103, 7459-7466.	3.6	42
65	The presence of ferrihydrite enhances greenhouse gas-methane emission in the environment. Science of the Total Environment, 2019, 688, 462-469.	8.0	10
66	The interaction between ionic liquids (ILs) and an enriched ammonia oxidising bacteria (AOB) culture. Chemosphere, 2019, 235, 842-848.	8.2	2
67	Wastewater treatment and recycle from a semiconductor industry: A demo-plant study. Water Practice and Technology, 2019, 14, 371-379.	2.0	13
68	Process optimization for simultaneous antibiotic removal and precious metal recovery in an energy neutral process. Science of the Total Environment, 2019, 695, 133914.	8.0	16
69	Mitigation of membrane fouling in a seawater-driven forward osmosis system for waste activated sludge thickening. Journal of Cleaner Production, 2019, 241, 118373.	9.3	21
70	Denitrifiers in Mainstream Anammox Processes: Competitors or Supporters?. Environmental Science & Envi	10.0	38
71	Long term impact of surfactants & polymers on the colloidal stability, aggregation and dissolution of silver nanoparticles. Environmental Research, 2019, 179, 108781.	7. 5	26
72	New insights on the sludge fermentation liquid driven denitrification: Evaluation of the system performance and effluent organic matter (EfOM). Bioresource Technology, 2019, 289, 121621.	9.6	29

#	Article	IF	Citations
73	Low-temperature-steam activation of phosphorus in biochar derived from enhanced biological phosphorus removal (EBPR) sludge. Water Research, 2019, 161, 202-210.	11.3	22
74	The role of ammonium oxidising bacteria (AOB) in ionic liquid 1-dodecylpyridinium chloride removal. Applied Microbiology and Biotechnology, 2019, 103, 4595-4604.	3.6	3
75	Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation. Water Research, 2019, 159, 135-144.	11.3	78
76	The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chemical Engineering Journal, 2019, 372, 332-340.	12.7	41
77	Quorum quenching in anaerobic membrane bioreactor for fouling control. Water Research, 2019, 156, 159-167.	11.3	91
78	Concentration dependent effect of humic acid on the transformations of silver nanoparticles. Journal of Molecular Liquids, 2019, 284, 291-299.	4.9	23
79	Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment. Nanotoxicology, 2019, 13, 339-353.	3.0	8
80	In-situ power generation and nutrients recovery from waste activated sludge – Long-term performance and system optimization. Chemical Engineering Journal, 2019, 361, 1207-1214.	12.7	22
81	Comparison of nitrous oxide emission between a partial and full nitrification enriched ammonia-oxidising culture. Chemosphere, 2019, 220, 974-982.	8.2	8
82	Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 2019, 216, 297-305.	8.2	153
83	Transformation of phosphorus in sewage sludge biochar mediated by a phosphate-solubilizing microorganism. Chemical Engineering Journal, 2019, 359, 1573-1580.	12.7	73
84	NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment. Chemosphere, 2019, 216, 633-639.	8.2	32
85	Free nitrous acid (FNA) induced transformation of sulfamethoxazole in the enriched nitrifying culture. Water Research, 2019, 149, 432-439.	11.3	49
86	In tandem effects of activated carbon and quorum quenching on fouling control and simultaneous removal of pharmaceutical compounds in membrane bioreactors. Chemical Engineering Journal, 2018, 341, 610-617.	12.7	36
87	On-line biofilm strength detection in cross-flow membrane filtration systems. Biofouling, 2018, 34, 123-131.	2.2	9
88	Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. Chemical Engineering Journal, 2018, 337, 183-192.	12.7	136
89	Role of respiratory terminal oxidases in the extracellular electron transfer ability of cyanobacteria. Biotechnology and Bioengineering, 2018, 115, 1361-1366.	3.3	19
90	Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation. Journal of Alloys and Compounds, 2018, 754, 153-162.	5.5	75

#	Article	IF	Citations
91	Long solid retention time (SRT) has minor role in promoting methane production in a 65 \hat{A}° C single-stage anaerobic sludge digester. Bioresource Technology, 2018, 247, 724-729.	9.6	34
92	Enhanced sludge solubilization and dewaterability by synergistic effects of nitrite and freezing. Water Research, 2018, 130, 208-214.	11.3	98
93	Amino acids stimulate the endosome-to-Golgi trafficking through Ragulator and small GTPase Arl5. Nature Communications, 2018, 9, 4987.	12.8	22
94	Transformation of dissolved organic matters produced from alkaline-ultrasonic sludge pretreatment in anaerobic digestion: From macro to micro. Water Research, 2018, 142, 138-146.	11.3	91
95	Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 2018, 93, 380-399.	16.4	270
96	Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chemical Engineering Journal, 2018, 352, 1-9.	12.7	110
97	Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment. Bioresource Technology, 2018, 266, 60-67.	9.6	69
98	High efficient alternating anaerobic/aerobic process for polyester resin wastewater treatment: Performance and microbial community structure. Biochemical Engineering Journal, 2018, 138, 121-130.	3.6	23
99	Hydrogen production from a thermophilic alkaline waste activated sludge fermenter: Effects of solid retention time (SRT). Chemosphere, 2018, 206, 101-106.	8.2	18
100	Effect of Ethylenediamine-N,N′-disuccinic acid (EDDS) on the speciation and bioavailability of Fe2+ in the presence of sulfide in anaerobic digestion. Bioresource Technology, 2017, 229, 169-179.	9.6	14
101	Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase – Investigation on dissolved organic matter transformation and microbial community shift. Water Research, 2017, 112, 261-268.	11.3	237
102	Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature. Water Research, 2017, 114, 308-315.	11.3	50
103	Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Applied Catalysis B: Environmental, 2017, 207, 93-102.	20.2	213
104	In-situ sludge pretreatment in a single-stage anaerobic digester. Bioresource Technology, 2017, 238, 102-108.	9.6	20
105	Effects of thermal-Fe (II) activated oxone treatment on sludge dewaterability. Chemical Engineering Journal, 2017, 322, 463-471.	12.7	70
106	The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresource Technology, 2017, 239, 336-344.	9.6	128
107	Degradation of Chloramphenicol with Novel Metal Foam Electrodes in Bioelectrochemical Systems. Electrochimica Acta, 2017, 240, 136-145.	5 . 2	32
108	Construction of WO ₃ –g-C ₃ N ₄ composites as efficient photocatalysts for pharmaceutical degradation under visible light. Catalysis Science and Technology, 2017, 7, 2591-2600.	4.1	86

#	Article	IF	CITATIONS
109	Effects of trace metal deficiency and supplementation on a submerged anaerobic membrane bioreactor. Bioresource Technology, 2017, 241, 161-170.	9.6	3
110	Comparison of different treatment methods for protein solubilisation from waste activated sludge. Water Research, 2017, 122, 492-502.	11.3	95
111	Novel carboxylated graphene oxideâ€ <scp>CuS</scp> â€Ag nanocomposite glass coating for organic degradation under solar light. Journal of Chemical Technology and Biotechnology, 2017, 92, 2626-2634.	3.2	9
112	Ultrathin g-C ₃ N ₄ nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for H ₂ production. Catalysis Science and Technology, 2017, 7, 2050-2056.	4.1	51
113	Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances. Chemosphere, 2017, 170, 233-241.	8.2	43
114	Effect of Synthesis Method on the Nanostructure and Solar-Driven Photocatalytic Properties of TiO ₂ -CuS Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 1347-1357.	6.7	41
115	Effects of ZnO nanoparticle exposure on wastewater treatment and soluble microbial products (SMPs) in an anoxic-aerobic membrane bioreactor. Chemosphere, 2017, 171, 446-459.	8.2	45
116	A novel A-B process for enhanced biological nutrient removal in municipal wastewater reclamation. Chemosphere, 2017, 189, 39-45.	8.2	25
117	Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate. Biotechnology Letters, 2017, 39, 1509-1514.	2.2	15
118	Effect of operating conditions on speciation and bioavailability of trace metals in submerged anaerobic membrane bioreactors. Bioresource Technology, 2017, 243, 810-819.	9.6	7
119	Dosing of Ethylenediamine-N,N′-disuccinic acid (EDDS) to improve the bioavailability of Fe2+ in the presence of sulfide in a submerged anaerobic membrane bioreactor. Chemical Engineering Journal, 2017, 330, 175-182.	12.7	11
120	Nitrite-driven abiotic transformation of sulfonamide micropollutants during freezing process. Chemical Engineering Journal, 2017, 327, 1128-1134.	12.7	22
121	Soluble microbial products (SMPs) in a sequencing batch reactor with novel cake filtration system. Chemosphere, 2017, 184, 1286-1297.	8.2	13
122	Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II) – Oxone conditioning. Water Research, 2017, 109, 13-23.	11.3	165
123	Microbial stress mediated intercellular nanotubes in an anaerobic microbial consortium digesting cellulose. Scientific Reports, 2017, 7, 18006.	3.3	8
124	Insights into quorum quenching mechanisms to control membrane biofouling under changing organic loading rates. Chemosphere, 2017, 182, 40-47.	8.2	36
125	Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal of Hazardous Materials, 2016, 318, 407-416.	12.4	109
126	Deposition of silver nanoparticles onto two dimensional BiOCl nanodiscs for enhanced visible light photocatalytic and biocidal activities. RSC Advances, 2016, 6, 64911-64920.	3.6	27

#	Article	IF	Citations
127	Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate. Water Science and Technology, 2016, 74, 448-456.	2.5	23
128	Enhanced biological phosphorus removal with different carbon sources. Applied Microbiology and Biotechnology, 2016, 100, 4735-4745.	3.6	77
129	Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments. Water Research, 2016, 105, 470-478.	11.3	155
130	The role of methanogens in acetic acid production under different salinity conditions. Chemosphere, 2016, 161, 53-60.	8.2	15
131	Biosorption for carbon capture on acclimated sludgeâ¿¿Process kinetics and microbial community. Biochemical Engineering Journal, 2016, 114, 119-129.	3.6	12
132	Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage. Nano Energy, 2016, 21, 71-79.	16.0	49
133	Alkali-solubilized organic matter from sludge and its degradability in the anaerobic process. Bioresource Technology, 2016, 200, 579-586.	9.6	64
134	Free nitrous acid inhibition on carbon storage microorganisms: Accumulated inhibitory effects and recoverability. Chemical Engineering Journal, 2016, 287, 285-291.	12.7	16
135	Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnology Advances, 2016, 34, 122-136.	11.7	226
136	Pilot-scale landfill with leachate recirculation for enhanced stabilization. Biochemical Engineering Journal, 2016, 105, 437-445.	3.6	24
137	Performance and microbial community analysis in alkaline two-stage enhanced anaerobic sludge digestion system. Biochemical Engineering Journal, 2016, 105, 296-305.	3.6	25
138	Acetic acid effects on methanogens in the second stage of a two-stage anaerobic system. Chemosphere, 2016, 144, 1498-1504.	8.2	22
139	Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system. Journal of Environmental Sciences, 2016, 42, 196-201.	6.1	20
140	Community quorum sensing signalling and quenching: microbial granular biofilm assembly. Npj Biofilms and Microbiomes, 2015, 1, 15006.	6.4	143
141	The challenges of mainstream deammonification process for municipal used water treatment. Applied Microbiology and Biotechnology, 2015, 99, 2485-2490.	3.6	158
142	Dynamics of propionic acid degradation in a two-phase anaerobic system. Chemosphere, 2015, 140, 47-53.	8.2	23
143	Regression based state space adaptive model of two-phase anaerobic reactor. Chemosphere, 2015, 140, 159-166.	8.2	3
144	The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresource Technology, 2015, 190, 289-298.	9.6	169

#	Article	IF	Citations
145	The role of hydrogenotrophic methanogens in an acidogenic reactor. Chemosphere, 2015, 140, 40-46.	8.2	39
146	Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes. ACS Nano, 2015, 9, 4628-4635.	14.6	102
147	Comparative study of low-energy ultrasonic and alkaline treatment on biosludge from secondary industrial wastewater treatment. Environmental Technology (United Kingdom), 2015, 36, 2239-2248.	2.2	10
148	N2O accumulation from denitrification under different temperatures. Applied Microbiology and Biotechnology, 2015, 99, 9215-9226.	3.6	27
149	Molecular mechanisms governing aerobic granular sludge processes. Water Practice and Technology, 2015, 10, 277-281.	2.0	1
150	Determination of the archaeal and bacterial communities in two-phase and single-stage anaerobic systems by 454 pyrosequencing. Journal of Environmental Sciences, 2015, 36, 121-129.	6.1	39
151	Enhanced carbon capture biosorption through process manipulation. Biochemical Engineering Journal, 2015, 93, 128-136.	3.6	13
152	Comparison of single-stage and two-phase anaerobic sludge digestion systems – Performance and microbial community dynamics. Chemosphere, 2015, 140, 54-62.	8.2	106
153	Recycling Bacteria for the Synthesis of LiMPO ₄ (M = Fe, Mn) Nanostructures for Highâ€Power Lithium Batteries. Small, 2014, 10, 3997-4002.	10.0	11
154	The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME Journal, 2014, 8, 1186-1197.	9.8	330
155	Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation. Journal of Environmental Sciences, 2014, 26, 875-884.	6.1	8
156	Acetic acid inhibition on methanogens in a two-phase anaerobic process. Biochemical Engineering Journal, 2013, 75, 1-7.	3.6	64
157	pH-Dependent Transformation of Ag Nanoparticles in Anaerobic Processes. Environmental Science & Environmental Science	10.0	21
158	Mammalian Mon2/Ysl2 regulates endosome-to-Golgi trafficking but possesses no guanine nucleotide exchange activity toward Arl1 GTPase. Scientific Reports, 2013, 3, 3362.	3.3	24
159	Energy utilization in sewage treatment – a review with comparisons. Journal of Water and Climate Change, 2013, 4, 1-10.	2.9	31
160	Imaging Beads-Retained Prey Assay for Rapid and Quantitative Protein-Protein Interaction. PLoS ONE, 2013, 8, e59727.	2.5	6
161	The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater. Biochemical Engineering Journal, 2012, 67, 52-59.	3.6	61
162	Response of poly-phosphate accumulating organisms to free nitrous acid inhibition under anoxic and aerobic conditions. Bioresource Technology, 2012, 116, 340-347.	9.6	38

#	Article	IF	Citations
163	Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source. Journal of Environmental Sciences, 2012, 24, 1616-1623.	6.1	46
164	The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research, 2011, 45, 4672-4682.	11.3	352
165	Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs). Applied Microbiology and Biotechnology, 2010, 88, 359-369.	3.6	76
166	The source of reducing power in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) $\hat{a}\in$ a mini-review. Water Science and Technology, 2010, 61, 1653-1662.	2.5	42
167	Development and potential of new generation photocatalytic systems for air pollution abatement: an overview. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 387-402.	1.5	24
168	Visible-light photoresponsive heterojunctions of (Nb–Ti–Si) and (Bi/Bi-O) nanoparticles. Electrochemistry Communications, 2009, 11, 509-514.	4.7	6
169	Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Water Research, 2009, 43, 1330-1340.	11.3	78
170	Highly Thermostable Anatase Titania-Pillared Clay for the Photocatalytic Degradation of Airborne Styrene. Environmental Science & Environmental Scienc	10.0	24
171	Fluorine and Carbon Codoped Macroporous Titania Microspheres: Highly Effective Photocatalyst for the Destruction of Airborne Styrene under Visible Light. Journal of Physical Chemistry C, 2008, 112, 19655-19661.	3.1	25
172	Free Nitrous Acid Inhibition on Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge. Environmental Science & Environmental Science & 2008, 42, 8260-8265.	10.0	222
173	Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?. Water Research, 2008, 42, 2361-2368.	11.3	107
174	Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms. Water Research, 2008, 42, 3207-3217.	11.3	58
175	Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms. Biotechnology and Bioengineering, 2007, 98, 903-912.	3.3	126