
Thomas J Webster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719088/publications.pdf Version: 2024-02-01

THOMAS I MERSTER

#	Article	IF	CITATIONS
1	Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21, 1803-1810.	5.7	1,212
2	Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Materials Research Part B, 2000, 51, 475-483.	3.0	874
3	Bacteria antibiotic resistance: New challenges and opportunities for implantâ€associated orthopedic infections. Journal of Orthopaedic Research, 2018, 36, 22-32.	1.2	621
4	A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International Journal of Nanomedicine, 2017, Volume 12, 2957-2978.	3.3	392
5	A review of fibrin and fibrin composites for bone tissue engineering. International Journal of Nanomedicine, 2017, Volume 12, 4937-4961.	3.3	324
6	Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review. Carbohydrate Polymers, 2019, 207, 588-600.	5.1	286
7	Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. Journal of Biomedical Materials Research Part B, 2002, 59, 312-317.	3.0	250
8	Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale, 2020, 12, 2268-2291.	2.8	207
9	The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials, 2015, 73, 185-197.	5.7	198
10	Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. International Journal of Nanomedicine, 2015, 10, 97.	3.3	175
11	Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. Acta Biomaterialia, 2018, 66, 93-108.	4.1	167
12	<p>A review of small molecules and drug delivery applications using gold and iron nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 1633-1657.	3.3	155
13	Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta Biomaterialia, 2016, 46, 256-265.	4.1	150
14	Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine, 2016, 11, 715-737.	1.7	147
15	Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomaterialia, 2015, 14, 175-184.	4.1	143
16	Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials, 2017, 119, 78-85.	5.7	141
17	Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Advanced Healthcare Materials, 2018, 7, e1800103.	3.9	137
18	<p>Would Colloidal Gold Nanocarriers Present An Effective Diagnosis Or Treatment For Ischemic Stroke?</p> . International Journal of Nanomedicine, 2019, Volume 14, 8013-8031.	3.3	127

#	Article	IF	CITATIONS
19	Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomaterialia, 2011, 7, 1298-1306.	4.1	126
20	<i>Pseudomonas aeruginosa</i> : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology, 2015, 10, 1683-1706.	1.0	125
21	Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 193-214.	2.6	121
22	Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. ACS Omega, 2020, 5, 2660-2669.	1.6	121
23	Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomaterialia, 2015, 24, 140-151.	4.1	120
24	<p>Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 1903-1914.	3.3	115
25	Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by <i>Staphylococcus aureus</i> , methicillinâ€resistant <i>Staphylococcus aureus</i> (MRSA), <i>Escherichia coli,</i> and <i>Pseudomonas aeruginosa</i> . Journal of Biomedical Materials Research - Part A. 2018, 106, 1400-1412.	2.1	110
26	pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Scientific Reports, 2017, 7, 45859.	1.6	109
27	Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 2457-2468.	3.3	108
28	pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomaterials Science and Engineering, 2015, 1, 1096-1103.	2.6	107
29	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	7.3	104
30	Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2528-2540.	2.6	102
31	<p>Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents</p> . International Journal of Nanomedicine, 2019, Volume 14, 2171-2190.	3.3	99
32	Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. International Journal of Nanomedicine, 2018, Volume 13, 3145-3161.	3.3	95
33	Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides. Materials Science and Engineering C, 2019, 99, 685-695.	3.8	83
34	Green Synthesis of Fe3O4 Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities. International Journal of Nanomedicine, 2021, Volume 16, 2515-2532.	3.3	83
35	A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Research, 2019, 12, 1381-1388.	5.8	82
36	Nanotechnology controlled drug delivery for treating bone diseases. Expert Opinion on Drug Delivery, 2009, 6, 851-864.	2.4	81

#	Article	IF	CITATIONS
37	<p>Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 4205-4224.	3.3	80
38	Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. International Journal of Nanomedicine, 2021, Volume 16, 223-235.	3.3	79
39	3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers, 2020, 12, 1717.	2.0	76
40	Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. JPhys Materials, 2020, 3, 034005.	1.8	76
41	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	3.3	76
42	Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an <i>in vitro</i> blood–brain barrier. Nanoscale, 2019, 11, 15057-15071.	2.8	75
43	Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 123-142.	1.7	73
44	Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials, 2020, 10, 1609.	1.9	73
45	Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport. International Journal of Nanomedicine, 2017, Volume 12, 6383-6398.	3.3	72
46	<p>CTGF Loaded Electrospun Dual Porous Core-Shell Membrane For Diabetic Wound Healing</p> . International Journal of Nanomedicine, 2019, Volume 14, 8573-8588.	3.3	70
47	<p>Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment</p> . International Journal of Nanomedicine, 2019, Volume 14, 4613-4624.	3.3	67
48	Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer technology for antitumor applications. International Journal of Nanomedicine, 2017, Volume 12, 1791-1802.	3.3	66
49	The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. Nanoscale, 2018, 10, 8628-8641.	2.8	66
50	Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale, 2016, 8, 15783-15794.	2.8	65
51	Nanofibrous scaffolds for biomedical applications. Nanoscale, 2018, 10, 12228-12255.	2.8	65
52	Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomaterials Science, 2021, 9, 1088-1103.	2.6	64
53	Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 86-97.	1.7	63
54	Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids and Surfaces B: Biointerfaces, 2017, 155, 544-552.	2.5	61

#	Article	IF	CITATIONS
55	Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. Advanced Therapeutics, 2021, 4, 2000076.	1.6	61
56	Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today, 2021, 36, 101051.	6.2	61
57	Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chemistry, 2019, 21, 1982-1998.	4.6	60
58	Fabrication of Polymeric Microparticles by Electrospray: The Impact of Experimental Parameters. Journal of Functional Biomaterials, 2020, 11, 4.	1.8	60
59	Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1005-1017.	1.7	59
60	Noninvasive nanoparticle strategies for brain tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2605-2621.	1.7	57
61	A Status Report on FDA Approval of Medical Devices Containing Nanostructured Materials. Trends in Biotechnology, 2019, 37, 117-120.	4.9	57
62	Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 33219-33228.	4.0	57
63	Nanotechnology and Nanomaterials for Improving Neural Interfaces. Advanced Functional Materials, 2018, 28, 1700905.	7.8	56
64	The Use of Infrapatellar Fat Pad-Derived Mesenchymal Stem Cells in Articular Cartilage Regeneration: A Review. International Journal of Molecular Sciences, 2021, 22, 9215.	1.8	56
65	Short communication: selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts. International Journal of Nanomedicine, 2014, 9, 461.	3.3	54
66	In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials, 2019, 198, 228-249.	5.7	54
67	Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hydroxyapatite. Acta Biomaterialia, 2019, 83, 425-434.	4.1	54
68	Enhanced Antibacterial Properties of Self-Assembling Peptide Amphiphiles Functionalized with Heparin-Binding Cardin-Motifs. ACS Applied Materials & Interfaces, 2017, 9, 22350-22360.	4.0	53
69	Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 713-723.	1.7	53
70	Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine. Bioelectricity, 2020, 2, 120-149.	0.6	53
71	<p>Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 3577-3595.	3.3	52
72	Synthesis, characterization, controlled release, and antibacterial studies of a novel streptomycin chitosan magnetic nanoantibiotic. International Journal of Nanomedicine, 2014, 9, 549.	3.3	50

#	Article	IF	CITATIONS
73	Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability. Materials Science and Engineering C, 2017, 71, 381-385.	3.8	50
74	Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. International Journal of Nanomedicine, 2019, Volume 14, 119-133.	3.3	50
75	<p>Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 8201-8215.	3.3	50
76	The Role of Nanomedicine in Growing Tissues. Annals of Biomedical Engineering, 2009, 37, 2034-2047.	1.3	49
77	<p>Dual targeting curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for improving osteosarcoma therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6425-6437.	3.3	49
78	3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 58-70.	1.7	49
79	The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1642-1652.	1.9	49
80	Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102143.	1.7	47
81	CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica Sinica B, 2021, 11, 1129-1147.	5.7	47
82	Antimicrobial and Controlled Release Studies of a Novel Nystatin Conjugated Iron Oxide Nanocomposite. BioMed Research International, 2014, 2014, 1-13.	0.9	46
83	Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials, 2018, 160, 107-123.	5.7	46
84	<p>Green Synthesis of Zeolite/Fe₂O₃ Nanocomposites: Toxicity & Cell Proliferation Assays and Application as a Smart Iron Nanofertilizer</p> . International Journal of Nanomedicine, 2020, Volume 15, 1005-1020.	3.3	46
85	Ubiquitin–proteasome system and the role of its inhibitors in cancer therapy. Open Biology, 2021, 11, 200390.	1.5	46
86	Reduced immune cell responses on nano and submicron rough titanium. Acta Biomaterialia, 2015, 16, 223-231.	4.1	45
87	Hydrothermal treatment of etched titanium: A potential surface nano-modification technique for enhanced biocompatibility. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102016.	1.7	44
88	<p>ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 3333-3346.	3.3	43
89	PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Materials Science and Engineering C, 2017, 73, 31-39.	3.8	42

90 Nanotechnology and picotechnology. , 2019, , 191-212.

41

#	Article	IF	CITATIONS
91	Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 1693-1702.	2.6	41
92	In situ printing of scaffolds for reconstruction of bone defects. Acta Biomaterialia, 2021, 127, 313-326.	4.1	41
93	Complete ablation of tumors using synchronous chemoradiation with bimetallic theranostic nanoparticles. Bioactive Materials, 2022, 7, 74-84.	8.6	41
94	Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. International Journal of Nanomedicine, 2015, 10, 1997.	3.3	40
95	Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma. International Journal of Nanomedicine, 2017, Volume 12, 4117-4127.	3.3	40
96	Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules, 2019, 9, 619.	1.8	40
97	Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for <scp>PEEK</scp> medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1352-1358.	1.6	39
98	Enhanced blood brain barrier permeability and glioblastoma cell targeting via thermoresponsive lipid nanoparticles. Nanoscale, 2017, 9, 15434-15440.	2.8	39
99	Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on a Charge Reversal Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 43411-43428.	4.0	39
100	PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 195-205.	1.7	39
101	Paclitaxel/methotrexate co-loaded PLGA nanoparticles in glioblastoma treatment: Formulation development and in vitro antitumor activity evaluation. Life Sciences, 2020, 256, 117943.	2.0	39
102	Bismuthâ€Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Advanced Healthcare Materials, 2020, 9, e1901695.	3.9	39
103	Hydroxyapatite and Î ² -TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Materials Science and Engineering C, 2020, 116, 111149.	3.8	39
104	Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood–brain barrier model. International Journal of Nanomedicine, 2016, Volume 11, 5371-5379.	3.3	38
105	Tat-functionalized liposomes for the treatment of meningitis: an in vitro study. International Journal of Nanomedicine, 2017, Volume 12, 3009-3021.	3.3	38
106	New perspectives in the topical delivery of optimized amphotericin B loaded nanoemulsions using excipients with innate anti-fungal activities: A mechanistic and histopathological investigation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1117-1126.	1.7	37
107	In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying. Materials Science and Engineering C, 2017, 77, 556-564.	3.8	36
108	Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 201-208.	1.7	36

#	Article	IF	CITATIONS
109	<p>The Potential Anticancer Activity of 5-Fluorouracil Loaded in Cellulose Fibers Isolated from Rice Straw</p> . International Journal of Nanomedicine, 2020, Volume 15, 5417-5432.	3.3	36
110	Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO–SiO 2 –Ag 2 O bioactive materials. Materials Science and Engineering C, 2016, 58, 700-708.	3.8	35
111	Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opinion on Drug Delivery, 2020, 17, 341-356.	2.4	35
112	Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. , 2021, , 439-456.		35
113	Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale, 2014, 6, 825-832.	2.8	34
114	Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration. Current Osteoporosis Reports, 2019, 17, 226-234.	1.5	34
115	Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. International Journal of Nanomedicine, 2017, Volume 12, 8325-8336.	3.3	33
116	<p>Green Synthesized BSA-Coated Selenium Nanoparticles Inhibit Bacterial Growth While Promoting Mammalian Cell Growth</p> . International Journal of Nanomedicine, 2020, Volume 15, 115-124.	3.3	33
117	A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. International Journal of Nanomedicine, 2018, Volume 13, 8379-8393.	3.3	32
118	<p>Improving The Oral Absorption Of Nintedanib By A Self-Microemulsion Drug Delivery System: Preparation And In Vitro/In Vivo Evaluation</p> . International Journal of Nanomedicine, 2019, Volume 14, 8739-8751.	3.3	32
119	Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102134.	1.7	32
120	<p>Novel Silver-Platinum Nanoparticles for Anticancer and Antimicrobial Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 169-179.	3.3	32
121	In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment. Current Osteoporosis Reports, 2016, 14, 386-395.	1.5	31
122	Co-delivery of Poria cocos extract and doxorubicin as an â€~all-in-one' nanocarrier to combat breast cancer multidrug resistance during chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102095.	1.7	31
123	High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102297.	1.7	30
124	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	1.7	30
125	A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. International Journal of Nanomedicine, 2015, 10, 7175.	3.3	29
126	Selfâ€assembled arginineâ€rich peptides as effective antimicrobial agents. Journal of Biomedical Materials Research - Part A, 2017, 105, 1046-1054.	2.1	29

#	Article	IF	CITATIONS
127	3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments. Acta Biomaterialia, 2019, 96, 662-673.	4.1	29
128	Improved green biosynthesis of chitosan decorated Ag- and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102331.	1.7	29
129	Novel PLGA-based nanoparticles for the oral delivery of insulin. International Journal of Nanomedicine, 2015, 10, 2207.	3.3	28
130	Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	28
131	Cold atmospheric plasma (CAP)-modified and bioactive protein-loaded core–shell nanofibers for bone tissue engineering applications. Biomaterials Science, 2019, 7, 2430-2439.	2.6	28
132	<p>Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4237-4256.	3.3	28
133	Bioinspired hydrogels build a bridge from bench to bedside. Nano Today, 2021, 39, 101157.	6.2	28
134	The promising use of nano-molecular imprinted templates for improved SARS-CoV-2 detection, drug delivery and research. Journal of Nanobiotechnology, 2021, 19, 305.	4.2	28
135	Development of a biocompatible nanodelivery system for tuberculosis drugs based on isoniazid-Mg/Al layered double hydroxide. International Journal of Nanomedicine, 2014, 9, 4749.	3.3	27
136	The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Critical Reviews in Food Science and Nutrition, 2022, 62, 3658-3697.	5.4	27
137	A dabigatran etexilate phospholipid complex nanoemulsion system for further oral bioavailability by reducing drug-leakage in the gastrointestinal tract. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1455-1464.	1.7	27
138	Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. International Journal of Nanomedicine, 2015, 10, 171.	3.3	26
139	4D printing smart biosystems for nanomedicine. Nanomedicine, 2019, 14, 1643-1645.	1.7	25
140	Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. International Journal of Biological Macromolecules, 2022, 199, 372-385.	3.6	25
141	Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to polyâ€Lâ€lactic acid for orthopedic applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 3136-3147.	2.1	24
142	A theranostic nanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1643-1654.	1.7	24
143	Synthesis, characterization and mechanistic study of nano chitosan tetrazole as a novel and promising platform for CRISPR delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 116-126.	1.8	24
144	Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics?. Expert Opinion on Drug Delivery, 2021, 18, 715-736.	2.4	24

#	Article	IF	CITATIONS
145	Effect of Paclitaxel/etoposide co-loaded polymeric nanoparticles on tumor size and survival rate in a rat model of glioblastoma. International Journal of Pharmaceutics, 2021, 604, 120722.	2.6	24
146	Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation. ACS Biomaterials Science and Engineering, 2018, 4, 1580-1590.	2.6	23
147	<p>A Review on the Biodistribution, Pharmacokinetics and Toxicity of Bismuth-Based Nanomaterials</p> . International Journal of Nanomedicine, 2020, Volume 15, 7079-7096.	3.3	23
148	A highly accurate methodology for the prediction and correlation of mechanical properties based on the slimness ratio of additively manufactured tensile test specimens. Journal of Materials Science, 2020, 55, 9578-9596.	1.7	23
149	<p>Advances in nanomedicine for the treatment of ankylosing spondylitis</p> . International Journal of Nanomedicine, 2019, Volume 14, 8521-8542.	3.3	22
150	Ciprofloxacin-Loaded Gold Nanoparticles against Antimicrobial Resistance: An In Vivo Assessment. Nanomaterials, 2021, 11, 3152.	1.9	22
151	Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles. International Journal of Nanomedicine, 2015, 10, 765.	3.3	21
152	A solid self-nanoemulsifying system of the BCS class IIb drug dabigatran etexilate to improve oral bioavailability. Nanomedicine, 2016, 11, 1801-1816.	1.7	21
153	The era of biofunctional biomaterials in orthopedics: what does the future hold?. Expert Review of Medical Devices, 2018, 15, 193-204.	1.4	21
154	Evaluation of cytotoxicity and antimicrobial activity of an injectable bone substitute of carrageenan and nano hydroxyapatite. Journal of Biomedical Materials Research - Part A, 2018, 106, 2984-2993.	2.1	21
155	Needle-injectable microcomposite cryogel scaffolds with antimicrobial properties. Scientific Reports, 2020, 10, 18370.	1.6	21
156	Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg ²⁺ , Zn ²⁺ and Cd ²⁺ . New Journal of Chemistry, 2020, 44, 11841-11852.	1.4	21
157	Bi ₂ O ₃ nano-flakes as a cost-effective antibacterial agent. Nanoscale Advances, 2021, 3, 4106-4118.	2.2	21
158	Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone. International Journal of Nanomedicine, 2014, 9, 5627.	3.3	20
159	The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells. Jom, 2015, 67, 804-810.	0.9	20
160	Facile in situ generation of bismuth tungstate nanosheet-multiwalled carbon nanotube composite as unconventional affinity material for quartz crystal microbalance detection of antibiotics. Journal of Hazardous Materials, 2019, 373, 50-59.	6.5	20
161	Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile <i>Deinococcus radiodurans</i> for Multifunctional Applications. Small, 2019, 15, e1900600.	5.2	20
162	A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Materials Science and Engineering C, 2020, 111, 110706.	3.8	20

#	ARTICLE	IF	CITATIONS
163	Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	19
164	High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation. Applied Microbiology and Biotechnology, 2017, 101, 455-464.	1.7	19
165	<p>Artemisinin Loaded mPEC-PCL Nanoparticle Based Photosensitive Gelatin Methacrylate Hydrogels for the Treatment of Gentamicin Induced Hearing Loss</p> . International Journal of Nanomedicine, 2020, Volume 15, 4591-4606.	3.3	19
166	<p>The Pimpled Gold Nanosphere: A Superior Candidate for Plasmonic Photothermal Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2903-2920.	3.3	19
167	Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Communications Biology, 2021, 4, 233.	2.0	19
168	Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. Iranian Journal of Pharmaceutical Research, 2020, 19, 3-17.	0.3	19
169	Disordered Topography Mediates Filopodial Extension and Morphology of Cells on Stiff Materials. Advanced Functional Materials, 2017, 27, 1702689.	7.8	18
170	Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. Biomaterials Science, 2020, 8, 1127-1136.	2.6	18
171	<p>Encapsulated Checkpoint Blocker Before Chemotherapy: The Optimal Sequence of Anti-CTLA-4 and Doxil Combination Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 5279-5288.	3.3	18
172	<p>Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing</p> . International Journal of Nanomedicine, 2020, Volume 15, 215-226.	3.3	18
173	Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. Journal of Nanostructure in Chemistry, 2022, 12, 919-932.	5.3	18
174	Disposable biosensors based on metal nanoparticles. Sensors International, 2022, 3, 100169.	4.9	18
175	Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 36-46.	1.7	17
176	A voyage from 3D to 4D printing in nanomedicine and healthcare: part II. Nanomedicine, 2022, 17, 255-270.	1.7	17
177	<p>Comparison of cytocompatibility and anticancer properties of traditional and green chemistry-synthesized tellurium nanowires</p> . International Journal of Nanomedicine, 2019, Volume 14, 3155-3176.	3.3	16
178	The Binary Effect on Methicillinâ€Resistant <i>Staphylococcus aureus</i> of Polymeric Nanovesicles Appended by Prolineâ€Rich Amino Acid Sequences and Inorganic Nanoparticles. Small, 2019, 15, e1804247.	5.2	16
179	Aloe Vera-Mediated Te Nanostructures: Highly Potent Antibacterial Agents and Moderated Anticancer Effects. Nanomaterials, 2021, 11, 514.	1.9	16
180	How can 3D printing be a powerful tool in nanomedicine?. Nanomedicine, 2018, 13, 251-253.	1.7	15

#	Article	IF	CITATIONS
181	A novel technique to produce tubular scaffolds based on collagen and elastin. Artificial Organs, 2021, 45, E113-E122.	1.0	15
182	Growth process and anticancer properties of gold nanorods. Journal of Biomedical Materials Research - Part A, 2017, 105, 2616-2621.	2.1	14
183	In Vivo Evaluation of the Genotoxic Effects of Poly (Butylene adipate-co-terephthalate)/Polypyrrole with Nanohydroxyapatite Scaffolds for Bone Regeneration. Materials, 2019, 12, 1330.	1.3	14
184	Fumaryl diketopiperazine based effervescent microparticles to escape macrophage phagocytosis for enhanced treatment of pneumonia via pulmonary delivery. Biomaterials, 2020, 228, 119575.	5.7	14
185	Biological Applications of Severely Plastically Deformed Nano-Grained Medical Devices: A Review. Nanomaterials, 2021, 11, 748.	1.9	14
186	Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: Is there a real difference?. Bioorganic and Medicinal Chemistry, 2021, 33, 116028.	1.4	14
187	<i>In vitro</i> apatite formation on porous anodic alumina induced by a phosphorylation treatment. Journal of Biomaterials Applications, 2014, 29, 321-328.	1.2	13
188	Ion-paired pirenzepine-loaded micelles as an ophthalmic delivery system for the treatment of myopia. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2079-2089.	1.7	13
189	A Novel Bioresorbable Device as a Controlled Release System for Protecting Cells from Oxidative Stress from Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 6827-6838.	1.9	13
190	Porous Titanium Surfaces to Control Bacteria Growth: Mechanical Properties and Sulfonated Polyetheretherketone Coatings as Antibiofouling Approaches. Metals, 2019, 9, 995.	1.0	13
191	Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe ₃ O ₄ nanocomposite for the treatment of cancer. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 873-881.	1.9	13
192	Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. International Journal of Nanomedicine, 2014, 9, 5533.	3.3	12
193	Controlling ferrofluid permeability across the blood–brain barrier model. Nanotechnology, 2014, 25, 075101.	1.3	12
194	Nano liposomal and cubosomal formulations with platinum-based anticancer agents: therapeutic advances and challenges. Nanomedicine, 2020, 15, 2399-2410.	1.7	12
195	Conductive all-carbon nanotube layers: Results on attractive physicochemical, anti-bacterial, anti-bacterial, anticancer and biocompatibility properties. Materials Science and Engineering C, 2021, 120, 111703.	3.8	12
196	<scp>R</scp> educing <scp><i>S</i></scp> <i>taphylococcus aureus</i> growth on <scp>T</scp> i alloy nanostructured surfaces through the addition of <scp>S</scp> n. Journal of Biomedical Materials Research - Part A, 2015, 103, 3757-3763.	2.1	11
197	Ultrasmall gold nanorods: synthesis and glycocalyx-related permeability in human endothelial cells. International Journal of Nanomedicine, 2019, Volume 14, 319-333.	3.3	11
198	<p>Effects of triptolide and methotrexate nanosuspensions on left ventricular remodeling in autoimmune myocarditis rats</p> . International Journal of Nanomedicine, 2019, Volume 14, 851-863.	3.3	11

#	Article	IF	CITATIONS
199	<p>Flexible and Transparent Artificial Synapse Devices Based on Thin-Film Transistors with Nanometer Thickness</p> . International Journal of Nanomedicine, 2020, Volume 15, 8037-8043.	3.3	11
200	A Soluplus/Poloxamer 407-based self-nanoemulsifying drug delivery system for the weakly basic drug carvedilol to improve its bioavailability. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 27, 102199.	1.7	11
201	Electrospun Nanofibrous Poly (Lactic Acid)/Titanium Dioxide Nanocomposite Membranes for Cutaneous Scar Minimization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 421.	2.0	10
202	Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110775.	2.5	10
203	Nanoscale pathogens treated with nanomaterial-like peptides: aÂplatform technology appropriate for future pandemics. Nanomedicine, 2021, 16, 1237-1254.	1.7	10
204	Synthesis of SPIONs-CNT Based Novel Nanocomposite for Effective Amperometric Sensing of First-Line Antituberculosis Drug Rifampicin. Journal of Nanoscience and Nanotechnology, 2020, 20, 2130-2137.	0.9	10
205	Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. Nanomaterials, 2022, 12, 779.	1.9	10
206	Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity. International Journal of Nanomedicine, 2014, 9, 1287.	3.3	9
207	<p>Construction and in vivo/in vitro evaluation of a nanoporous ion-responsive targeted drug delivery system for recombinant human interferon α-2b delivery</p> . International Journal of Nanomedicine, 2019, Volume 14, 5339-5353.	3.3	9
208	Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomedical Physics and Engineering Express, 2020, 6, 055015.	0.6	9
209	Anti-Inflammatory Bone Protective Effects of Nano-Protein Extracts from Mushroom Species: <i>Ganoderma lucidum</i> and <i>Pleurotus ostreatus</i> . Journal of Nanoscience and Nanotechnology, 2017, 17, 5884-5889.	0.9	8
210	<p>Greater osteoblast densities due to the addition of amphiphilic peptide nanoparticles to nano hydroxyapatite coatings</p> . International Journal of Nanomedicine, 2019, Volume 14, 3265-3272.	3.3	8
211	Preparation, intestinal segment stability, and mucoadhesion properties of novel thymopentin-loaded chitosan derivatives coated with poly (n-butyl) cyanoacrylate nanoparticles. International Journal of Nanomedicine, 2019, Volume 14, 1659-1668.	3.3	8
212	Circulating tumor-cell-targeting Au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores. Journal of Materials Chemistry B, 2020, 8, 5460-5471.	2.9	8
213	Effect of Precursor Deficiency Induced Ca/P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity. Materials, 2021, 14, 3158.	1.3	8
214	Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model. Journal of Drug Delivery Science and Technology, 2021, 66, 102854.	1.4	8
215	Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, 51, 475.		8
216	Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation. ACS Applied Bio Materials, 2022, 5, 1013-1024.	2.3	8

#	Article	IF	CITATIONS
217	Radiation dose and schedule influence the abscopal effect in a bilateral murine CT26 tumor model. International Immunopharmacology, 2022, 108, 108737.	1.7	8
218	Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation. Bio-Medical Materials and Engineering, 2014, 24, 2101-2107.	0.4	7
219	<p>Ectopic chondrogenesis of nude mouse induced by nano gene delivery enhanced tissue engineering technology</p> . International Journal of Nanomedicine, 2019, Volume 14, 4755-4765.	3.3	7
220	Novel magnetic nanocomposites combining selenium and iron oxide with excellent anti-biofilm properties. Journal of Materials Science, 2020, 55, 1012-1022.	1.7	7
221	<p>Short Communication: An Updated Design to Implement Artificial Neuron Synaptic Behaviors in One Device with a Control Gate</p> . International Journal of Nanomedicine, 2020, Volume 15, 6239-6245.	3.3	7
222	<p>Short Communication: Fructose-Enhanced Antibacterial Activity of Self-Assembled Nano-Peptide Amphiphiles for Treating Antibiotic-Resistant Bacteria</p> . International Journal of Nanomedicine, 2020, Volume 15, 513-519.	3.3	7
223	Nanobiosensors for theranostic applications. , 2021, , 511-543.		7
224	Green nanotechnology in cardiovascular tissue engineering. , 2022, , 237-281.		7
225	In Situ Bone Growth Detection Using Carbon Nanotubes–Titanium Sensors. BioNanoScience, 2013, 3, 184-191.	1.5	6
226	Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA. International Journal of Nanomedicine, 2014, 10, 89.	3.3	6
227	<p>Selenium Nanoparticle Protection of Fibroblast Stress: Activation of ATF4 and Bcl-xL Expression</p> . International Journal of Nanomedicine, 2019, Volume 14, 9995-10007.	3.3	6
228	<p>Enzymatic Synthesis of Ricinoleyl Hydroxamic Acid Based on Commercial Castor Oil, Cytotoxicity Properties and Application as a New Anticancer Agent</p> . International Journal of Nanomedicine, 2020, Volume 15, 2935-2945.	3.3	6
229	From Bulk to Nanoparticles: An Overview of Antiviral Materials, Its Mechanisms, and Applications. Particle and Particle Systems Characterization, 2021, 38, 2100044.	1.2	6
230	MgO nanocomposites as new antibacterial materials for orthopedic tissue engineering applications. , 2014, , .		5
231	Development of biocompatible 1D CuO nanoneedles and their potential for sensitive, mass-based detection of anti-tuberculosis drugs. Applied Nanoscience (Switzerland), 2019, 9, 1341-1351.	1.6	5
232	siVEGF-loaded nanoparticle uptake by tumor-associated vascular endothelial cells for hepatocellular carcinoma. Nanomedicine, 2020, 15, 1297-1314.	1.7	5
233	Advances in 3D-Printed Surface-Modified Ca-Si Bioceramic Structures and Their Potential for Bone Tumor Therapy. Materials, 2021, 14, 3844.	1.3	5
234	Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. , 2021, 4, 264-297.		5

#	Article	IF	CITATIONS
235	Improving the self-assembly of bioresponsive nanocarriers by engineering doped nanocarbons: a computational atomistic insight. Scientific Reports, 2021, 11, 21538.	1.6	5
236	Accelerated Neutral Atom Beam (ANAB) Modified Poly-Ether-Ether-Ketone for Increasing <i>In Vitro</i> Bone Cell Functions and Reducing Bacteria Colonization Without Drugs or Antibiotics. Journal of Biomedical Nanotechnology, 2022, 18, 788-795.	0.5	5
237	Co-Encapsulation of Violacein and Iron Oxide in Poly(lactic acid) Nanoparticles for Simultaneous Antibacterial and Anticancer Applications. Journal of Biomedical Nanotechnology, 2022, 18, 729-739.	0.5	5
238	EXPERIMENTAL METHODS AND IN VITRO CYTOXICITY AND GENOTOXICITY OF NANOMATERIALS. Nano LIFE, 2013, 03, 1340008.	0.6	4
239	<p>Temperature Dependence Of AOS Thin Film Nano Transistors For Medical Applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 8685-8691.	3.3	4
240	Recent Advances in Nanostructured Polymer Composites for Biomedical Applications. , 2019, , 21-52.		4
241	A Study of the Chemistries, Growth Mechanisms, and Antibacterial Properties of Cerium- and Yttrium-Containing Nanoparticles. ACS Biomaterials Science and Engineering, 2021, 7, 1787-1807.	2.6	4
242	Polyvinyl alcohol/chitosan/silver nanofibers as antibacterial agents and as efficient adsorbents to remove methyl orange from aqueous solutions. Journal of the Iranian Chemical Society, 2022, 19, 1287-1299.	1.2	4
243	A voyage from 3D to 4D printing in nanomedicine and healthcare: part I. Nanomedicine, 2022, 17, 237-253.	1.7	4
244	Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility. In Vitro Models, 0, , .	1.0	4
245	Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density. International Journal of Nanomedicine, 2015, 10, 527.	3.3	3
246	Biomaterials: Disordered Topography Mediates Filopodial Extension and Morphology of Cells on Stiff Materials (Adv. Funct. Mater. 38/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
247	Silver-coated gold nanorods as a promising antimicrobial agent in the treatment of cancer-related infections. International Journal of Nanomedicine, 2018, Volume 13, 6575-6583.	3.3	3
248	Oneâ€Transistor Memory Compatible with Siâ€Based Technology with Multilevel Applications. Advanced Electronic Materials, 2019, 5, 1900262.	2.6	3
249	Macrophage escape by cholesterol-polyoxyethylene sorbitol oleate micelles for pulmonary delivery. Nanomedicine, 2020, 15, 489-509.	1.7	3
250	A Novel Para-Amino Salicylic Acid Magnesium Layered Hydroxide Nanocomposite Anti-Tuberculosis Drug Delivery System with Enhanced in vitro Therapeutic and Anti-Inflammatory Properties. International Journal of Nanomedicine, 2021, Volume 16, 7035-7050.	3.3	3
251	Accelerated neutral atom beam (ANAB) modified polyethylene for decreased wear and reduced bacteria colonization: An in vitro study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102540.	1.7	3
252	Synthesis of "Naked―TeO ₂ Nanoparticles for Biomedical Applications. ACS Omega, 2022, 7, 23685-23694.	1.6	3

#	Article	IF	CITATIONS
253	Modeling and Mechanism of Enhanced Performance of In-Ga-Zn-O Thin-Film Transistors with Nanometer Thicknesses under Temperature Stress. Journal of Physical Chemistry C, 2020, 124, 22793-22798.	1.5	2
254	<p>Implementation of PPI with Nano Amorphous Oxide Semiconductor Devices for Medical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 1863-1870.	3.3	2
255	Protein based nanomedicine: Promising therapeutic modalities against inflammatory disorders. Nano Select, 2022, 3, 733-750.	1.9	2
256	Bioprospecting of novel algal species with nanobiotechnology. , 2022, , 41-74.		2
257	Reduced Adhesion of Staphylococcus aureus to ZnO/PVC Nanocomposites. , 2013, , .		1
258	Bacteria Fighting Paper Towels: The Influence of Selenium Nanoparticles. , 2013, , .		1
259	Electrospun silk doped with selenium for antibacterial skin applications. , 2014, , .		1
260	Antibacterial properties of TiO <inf>2</inf> nanotubes incorporated with ZnO. , 2014, , .		1
261	Selenium Nanoparticles Inhibit Various Bacterial Growth on Paper Towels. Materials Research Society Symposia Proceedings, 2014, 1626, 1.	0.1	1
262	Functionalized nanophase hydroxyapatite (HA) for orthopedic applications. , 2014, , .		1
263	Inhibition of various bacterial growths on paper towels through the use of selenium nanoparticles. , 2014, , .		1
264	Nanostructured Biomaterials for Inhibiting Cancer Cell Functions. Frontiers in Nanobiomedical Research, 2014, , 307-331.	0.1	1
265	Selective Cytotoxicities of Red-Allotrope Selenium Nanoparticles and Polyethylene Glycol Towards Head and Neck Squamous Cell Carcinoma in Comparison to Human Dermal Fibroblasts. MRS Advances, 2016, 1, 3775-3782.	0.5	1
266	Medicine embraces nano: diagnostics to delivery. International Journal of Nanomedicine, 2018, Volume 13, 1-2.	3.3	1
267	Biomimetic Nanohydroxyapatite Synthesized With/Without Tris-Buffered Simulated Body Fluid: A Comparative Analysis. Journal of Nanoscience and Nanotechnology, 2018, 18, 4423-4427.	0.9	1
268	<p>Think international collaborations are safe? Think again …</p> . International Journal of Nanomedicine, 2019, Volume 14, 6933-6935.	3.3	1
269	<p>Change Of Nano Material Electrical Characteristics For Medical System Applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 10119-10122.	3.3	1
270	Patents, technology transfer, and commercialization aspects of biogenicÂnanoparticles. , 2021, , 323-339.		1

#	Article	IF	CITATIONS
271	Antibacterial behavior of oxynitride glasses as a glassy grain boundary phase for silicon nitrideâ€based ceramics. International Journal of Applied Glass Science, 2021, 12, 328-336.	1.0	1
272	Coating Polyurethane Surfaces by Electrostatic Charging Followed by Dip Coating/Electrophoretic Deposition. FASEB Journal, 2015, 29, LB427.	0.2	1
273	Using Nanotechnology and Picotechnology to Increase Tissue Growth and Reduce Bacterial Infections. FASEB Journal, 2015, 29, 208.1.	0.2	1
274	Nanobiomaterials for three-dimensional bioprinting. , 2022, , 1-24.		1
275	Accelerated Neutral Atom Beam (ANAB) Modified Polypropylene for Reducing Bacteria Colonization Without Antibiotics. Journal of Biomedical Nanotechnology, 2022, 18, 868-874.	0.5	1
276	Bioactivity of Vitronectin Adsorbed on Nanophase Alumina Promotes Osteoblast Adhesion. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	0
277	Preparation of Nanotubular PDMS/PVC Molds for Reduced Catheter Inflammation and Infection. , 2013,		0
278	Enhanced Skin Cell Fuctions on Bioactive Rosette Nanotube Composites. , 2013, , .		0
279	Using an in vitro Blood-Brain Barrier Model to Characterize Magnetic Nanoparticle Permeability. , 2013, , .		0
280	Characterizing Stem Cell Proliferation on Magnesium Nanoparticle Mineralized Poly(l-Lactic Acid) Scaffolds for Enthesis Applications. , 2013, , .		0
281	Identifying Iron Oxide Based Materials that Can Either Pass or Not Pass through the in vitro Blood-Brain Barrier. Materials Research Society Symposia Proceedings, 2014, 1621, 33-38.	0.1	0
282	Selective cytotoxicity of curcumin loaded twin-base linker rosette nanotubes towards osteosarcoma than healthy osteoblasts. , 2014, , .		0
283	Controlling permeabilities of ferrofluids with various coatings across the blood-brain barrier. , 2014, , , .		0
284	Bone morphogenetic factor peptide functionalized rosette nanotubes for orthopedic applications. , 2014, , .		0
285	Preparation of a nanopatterned polymer replica for reducing catheter infection. , 2014, , .		0
286	Reducing cancer cell interactions with selenium nanocluster-coated PLLA. , 2014, , .		0
287	Reducing Infections Using Nanotechnology. Materials Research Society Symposia Proceedings, 2014, 1621, 25-32.	0.1	Ο
288	Multi-branched gold nanoparticles for Surface Enhanced Raman scattering characterization. Materials Research Society Symposia Proceedings, 2014, 1625, 1.	0.1	0

#	Article	IF	CITATIONS
289	Enhanced Attachment and Proliferation of Fibroblasts on Anodized 316L Stainless Steel with Nano-pit Arrays. Materials Research Society Symposia Proceedings, 2014, 1626, 1.	0.1	0
290	Development of a Novel Zinc Oxide/Polyvinyl Chloride Nanocomposite Material for Medical Implant Applications. Materials Research Society Symposia Proceedings, 2014, 1626, 1.	0.1	0
291	Polymersomes for image-guided therapy. , 2014, , .		Ο
292	MgO Nanomaterials Improve Fibroblast Adhesion and Proliferation. Materials Research Society Symposia Proceedings, 2015, 1722, 26.	0.1	0
293	Summary of the National Conference on Challenges in Biomaterials Research jointly organized by VIT and CSIR-CECRI. International Journal of Nanomedicine, 2015, 10 Suppl 1, 1.	3.3	Ο
294	Decreased Bacterial Activity on Nanoâ€patterned PDMS Replica for Catheterâ€associated Infection Prevention. FASEB Journal, 2015, 29, LB649.	0.2	0