Laurent Marichal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2718918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein Adsorption and Reorganization on Nanoparticles Probed by the Coffee-Ring Effect: Application to Single Point Mutation Detection. Journal of the American Chemical Society, 2016, 138, 11623-11632.	13.7	92
2	RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology, 2016, 10, 1555-1564.	3.0	86
3	How a Virus Circumvents Energy Barriers to Form Symmetric Shells. ACS Nano, 2020, 14, 3170-3180.	14.6	45
4	Protein–Nanoparticle Interactions: What Are the Protein–Corona Thickness and Organization?. Langmuir, 2019, 35, 10831-10837.	3.5	40
5	<i>In Situ</i> Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS Nano, 2020, 14, 9073-9088.	14.6	38
6	Protein Corona Composition of Silica Nanoparticles in Complex Media: Nanoparticle Size does not Matter. Nanomaterials, 2020, 10, 240.	4.1	29
7	From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein–Nanoparticle Interactions. Langmuir, 2020, 36, 8218-8230.	3.5	26
8	Human Serum Albumin in the Presence of AGuIX Nanoagents: Structure Stabilisation without Direct Interaction. International Journal of Molecular Sciences, 2020, 21, 4673.	4.1	13
9	Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809.	5.6	9
10	Relationships between RNA topology and nucleocapsid structure in a model icosahedral virus. Biophysical Journal, 2021, 120, 3925-3936.	0.5	6
11	Insulin aggregation starts at dynamic triple interfaces, originating from solution agitation. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112451.	5.0	6
12	Importance of Post-translational Modifications in the Interaction of Proteins with Mineral Surfaces: The Case of Arginine Methylation and Silica surfaces. Langmuir, 2018, 34, 5312-5322.	3.5	4