Alexander Bonk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2718811/publications.pdf

Version: 2024-02-01

430874 315739 1,515 43 18 38 citations h-index g-index papers 43 43 43 970 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phase diagram, thermodynamic properties and long-term isothermal stability of quaternary molten nitrate salts for thermal energy storage. Solar Energy, 2022, 231, 1061-1071.	6.1	5
2	Thermal stability, hydrolysis and thermodynamic properties of molten KCl-CuCl. Materialia, 2022, 21, 101296.	2.7	2
3	Simulation-Assisted Determination of the Minimum Melting Temperature Composition of MgCl2–KCl–NaCl Salt Mixture for Next-Generation Molten Salt Thermal Energy Storage. Frontiers in Energy Research, 2022, 10, .	2.3	5
4	Basic engineering of a high performance molten salt tower receiver system. AIP Conference Proceedings, 2022, , .	0.4	1
5	Molten Salt Storage for Power Generation. Chemie-Ingenieur-Technik, 2021, 93, 534-546.	0.8	67
6	Compatibility of 3D-Printed Oxide Ceramics with Molten Chloride Salts for High-Temperature Thermal Energy Storage in Next-Generation CSP Plants. Energies, 2021, 14, 2599.	3.1	2
7	Improving the corrosion resistance of ferritic-martensitic steels at 600°C in molten solar salt via diffusion coatings. Solar Energy Materials and Solar Cells, 2021, 227, 111105.	6.2	12
8	Investigation of Regeneration Mechanisms of Aged Solar Salt. Materials, 2021, 14, 5664.	2.9	7
9	Dynamic corrosion testing of metals in solar salt for concentrated solar power. Solar Energy Materials and Solar Cells, 2021, 232, 111331.	6.2	18
10	Engineering molten MgCl2–KCl–NaCl salt for high-temperature thermal energy storage: Review on salt properties and corrosion control strategies. Solar Energy Materials and Solar Cells, 2021, 232, 111344.	6.2	47
11	A New Approach to Low-Cost, Solar Salt-Resistant Structural Materials for Concentrating Solar Power (CSP) and Thermal Energy Storage (TES). Metals, 2021, 11, 1970.	2.3	8
12	Defined purge gas composition stabilizes molten nitrate salt - Experimental prove and thermodynamic calculations. Solar Energy, 2020, 211, 453-462.	6.1	16
13	Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal battery. Journal of Power Sources, 2020, 475, 228674.	7.8	23
14	An inexpensive storage material for molten salt based thermocline concepts: Stability of AlferRock in solar salt. Solar Energy Materials and Solar Cells, 2020, 212, 110578.	6.2	10
15	With a view to elevated operating temperatures in thermal energy storage - Reaction chemistry of Solar Salt up to 630°C. Solar Energy Materials and Solar Cells, 2020, 212, 110577.	6.2	12
16	Solar Salt – Pushing an old material for energy storage to a new limit. Applied Energy, 2020, 262, 114535.	10.1	57
17	Enhancing the thermal stability of solar salt up to $600 \hat{A}^{\circ} \text{C}$ in extended lab-scale experiments. AIP Conference Proceedings, 2020, , .	0.4	5
18	Molten chloride salts for next generation CSP plants: Selection of promising chloride salts & mp; study on corrosion of alloys in molten chloride salts. AIP Conference Proceedings, 2019, , .	0.4	45

#	Article	IF	CITATIONS
19	Impact of Solar Salt aging on corrosion of martensitic and austenitic steel for concentrating solar power plants. Solar Energy Materials and Solar Cells, 2019, 203, 110162.	6.2	33
20	Microkinetics of the reaction <mml:math altimg="si49.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow><mml:mi>N</mml:mi><mml:mi>O</mml:mi></mml:mrow><mr 178301.<="" 2019,="" 678,="" acta,="" td="" thermochimica=""><td>nl:mn>3<!--</td--><td>mml:mn> < mr</td></td></mr></mml:msubsup></mml:math>	nl:mn>3 </td <td>mml:mn> < mr</td>	mml:mn> < mr
21	Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level. Solar Energy Materials and Solar Cells, 2019, 199, 8-15.	6.2	81
22	Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials. Solar Energy Materials and Solar Cells, 2019, 193, 298-313.	6.2	123
23	Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. Journal of Energy Storage, 2018, 15, 408-414.	8.1	42
24	Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Progress in Energy and Combustion Science, 2018, 67, 69-87.	31.2	161
25	Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Solar Energy Materials and Solar Cells, 2018, 184, 22-30.	6.2	132
26	Influence of different atmospheres on molten salt chemistry and its effect on steel corrosion. AIP Conference Proceedings, $2018, \ldots$	0.4	16
27	Molten salt chemistry in nitrate salt storage systems: Linking experiments and modeling. Energy Procedia, 2018, 155, 503-513.	1.8	10
28	Semi-empirical Density Estimations for Binary, Ternary and Multicomponent Alkali Nitrate–Nitrite Molten Salt Mixtures. International Journal of Thermophysics, 2018, 39, 1.	2.1	12
29	Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Frontiers of Chemical Science and Engineering, 2018, 12, 564-576.	4.4	126
30	Investigation of the long-term stability of quartzite and basalt for a potential use as filler materials for a molten-salt based thermocline storage concept. Solar Energy, 2018, 171, 827-840.	6.1	21
31	High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres. Applied Energy, 2018, 226, 107-115.	10.1	63
32	In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions. Review of Scientific Instruments, 2017, 88, 083116.	1.3	4
33	Material investigations on the thermal stability of solar salt and potential filler materials for molten salt storage. AIP Conference Proceedings, 2017, , .	0.4	25
34	Structural changes in equimolar ceria–hafnia materials under solar thermochemical looping conditions: cation ordering, formation and stability of the pyrochlore structure. RSC Advances, 2017, 7, 53797-53809.	3.6	9
35	Round robin test on the measurement of the specific heat of solar salt. AIP Conference Proceedings, 2017, , .	0.4	10
36	Cyclic Voltammetry for Monitoring Corrosive Impurities in Molten Chlorides for Thermal Energy Storage. Energy Procedia, 2017, 135, 82-91.	1.8	40

#	Article	IF	CITATIONS
37	Porous nanoclay polysulfone composites: A backbone with high pore accessibility for functional modifications. Microporous and Mesoporous Materials, 2016, 234, 107-112.	4.4	7
38	Structural Changes in Ce0.5Zr0.5O2â^î^ûunder Temperature-Swing and Isothermal Solar Thermochemical Looping Conditions Determined by in Situ Ce K and Zr K Edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 13931-13941.	3.1	11
39	Low-Temperature Reducibility of M _{<i>x</i>} Ce _{1â€"<i>x</i>} O ₂ (M =) Tj ET	Qql ₁ 1 0.7	784314 rgBT
40	The effect of dopants on the redox performance, microstructure and phase formation of ceria. Journal of Power Sources, 2015, 300, 261-271.	7.8	25
41	Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 26988-26996.	2.8	14
42	Thermochemical CO ₂ splitting <i>via</i> redox cycling of ceria reticulated foam structures with dual-scale porosities. Physical Chemistry Chemical Physics, 2014, 16, 10503-10511.	2.8	171
43	Synthetic Biofuels by Moltenâ€Salt Catalytic Conversion: Corrosion of Structural Materials in Ternary Molten Chlorides. Advanced Engineering Materials, 0, , 2101453.	3.5	2