David Eisenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Photoelectrochemical Water Oxidation on Bismuth Vanadate by Electrodeposition of Amorphous Titanium Dioxide. Journal of the American Chemical Society, 2014, 136, 14011-14014.	6.6	193
2	Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes. Chemical Society Reviews, 2010, 39, 2879.	18.7	143
3	A Simple Synthesis of an Nâ€Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells. Chemistry - A European Journal, 2016, 22, 501-505.	1.7	86
4	A Multiâ€Doped Electrocatalyst for Efficient Hydrazine Oxidation. Angewandte Chemie - International Edition, 2018, 57, 17168-17172.	7.2	57
5	Ball-and-Socket Stacking of Supercharged Geodesic Polyarenes:Â Bonding by Interstitial Lithium Ions. Journal of the American Chemical Society, 2005, 127, 9581-9587.	6.6	56
6	Bicorannulenyl: Stereochemistry of a C ₄₀ H ₁₈ Biaryl Composed of Two Chiral Bowls. Journal of Organic Chemistry, 2008, 73, 6073-6078.	1.7	47
7	The evolution of hierarchical porosity in self-templated nitrogen-doped carbons and its effect on oxygen reduction electrocatalysis. RSC Advances, 2016, 6, 80398-80407.	1.7	46
8	A rational synthesis of hierarchically porous, N-doped carbon from Mg-based MOFs: understanding the link between nitrogen content and oxygen reduction electrocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 20778-20783.	1.3	42
9	Cooperative Catalysis for Selective Alcohol Oxidation with Molecular Oxygen. Chemistry - A European Journal, 2016, 22, 12307-12311.	1.7	42
10	Highly charged supramolecular oligomers based on the dimerization of corannulene tetraanion. Chemical Communications, 2010, 46, 9010.	2.2	40
11	Boosting the Supercapacitance of Nitrogenâ€Đoped Carbon by Tuning Surface Functionalities. ChemSusChem, 2017, 10, 4018-4024.	3.6	38
12	Understanding Oxygen Activation on Metal- and Nitrogen-Codoped Carbon Catalysts. ACS Catalysis, 2018, 8, 8618-8629.	5.5	34
13	Polyarene anions: interplay between theory and experiment. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 525-547.	6.2	30
14	Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling. Carbon, 2021, 173, 1105-1114.	5.4	29
15	Urea oxidation electrocatalysis on nickel hydroxide: the role of disorder. Journal of Solid State Electrochemistry, 2021, 25, 159-171.	1.2	25
16	Revealing structure–activity links in hydrazine oxidation: doping and nanostructure in carbide–carbon electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 23854-23861.	5.2	22
17	The Bicorannulenyl Dianion: A Charged Overcrowded Ethylene. Angewandte Chemie - International Edition, 2010, 49, 7538-7542.	7.2	21
18	1,3,5â€ŧricorannulenylbenzene: stereochemistry, reduction and supramolecular dimerization of a branched oligocorannulene. Journal of Physical Organic Chemistry, 2013, 26, 124-130.	0.9	16

DAVID EISENBERG

#	Article	IF	CITATIONS
19	Cooperative Surfaceâ€Particle Catalysis: The Role of the "Active Doughnut―in Catalytic Oxidation. ChemCatChem, 2018, 10, 2119-2124.	1.8	15
20	Fe–N–C electrocatalysts in the oxygen and nitrogen cycles in alkaline media: the role of iron carbide. Physical Chemistry Chemical Physics, 2021, 23, 26674-26679.	1.3	13
21	Special Electronic Structure and Extended Supramolecular Oligomerization of Anionic 1,4â€Dicorannulenylbenzene. European Journal of Organic Chemistry, 2012, 2012, 6321-6327.	1.2	12
22	Understanding the self-templating of hierarchically porous carbon electrocatalysts using Group 2 coordination polymers. Materials Advances, 2020, 1, 20-33.	2.6	11
23	A simple decagram-scale synthesis of an atomically dispersed, hierarchically porous Fe–N–C catalyst for acidic ORR. Journal of Materials Chemistry A, 2022, 10, 19859-19867.	5.2	11
24	Pyrolyze this paper: Can biomass become a source for precise carbon electrodes?. Current Opinion in Electrochemistry, 2021, 25, 100638.	2,5	10
25	Carbon Electrocatalysts For Hydrazine Oxidation: Self-Templating Design Of Hierarchical Porosity Using Barium Carbonate Nanoparticles. Journal of the Electrochemical Society, 2020, 167, 064517.	1.3	9
26	A Multiâ€Ðoped Electrocatalyst for Efficient Hydrazine Oxidation. Angewandte Chemie, 2018, 130, 17414-17418.	1.6	8
27	The Bicorannulenyl Dianion: A Charged Overcrowded Ethylene. Angewandte Chemie, 2010, 122, 7700-7704.	1.6	7
28	Mesomorphic behavior induced by stacking interactions between poly(2-vinyl pyridine) and palladium pincer surfactants in the solid state. Soft Matter, 2012, 8, 7393.	1.2	6
29	Imaging the Anisotropic Reactivity of a Tungsten Diselenide Photocathode. ChemElectroChem, 2015, 2, 1259-1263.	1.7	6
30	Understanding hydrazine oxidation electrocatalysis on undoped carbon. Physical Chemistry Chemical Physics, 2022, 24, 9897-9903.	1.3	6
31	Templateâ€Free Formation of Regular Macroporosity in Carbon Materials Made from a Folded Polymer Precursor. Small, 2021, 17, 2100712.	5.2	4
32	Orthogonal Design of Feâ^'N ₄ Active Sites and Hierarchical Porosity in Hydrazine Oxidation Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	4
33	Combining polarized low-frequency Raman with XRD to identify directional structural motifs in a pyrolysis precursor. Chemical Communications, 2021, 57, 7015-7018.	2.2	3
34	Urea Oxidation Electrocatalysis on Nickel Hydroxide: The Role of Disorder. ECS Meeting Abstracts, 2021, MA2021-01, 1306-1306.	0.0	1
35	Revealing Structure–Activity Links in Hydrazine Oxidation: Doping and Nanostructure in Carbide–Carbon Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1305-1305.	0.0	0
36	Hydrazine Oxidation Electrocatalysis on Multi-Doped Carbons: Who Does What?. ECS Meeting Abstracts, 2021, MA2021-01, 475-475.	0.0	0

DAVID EISENBERG

#	Article	IF	CITATIONS
37	Understanding the Self-Templating of Hierarchically Porous Carbon Electrocatalysts Using Group 2 Coordination Polymers. ECS Meeting Abstracts, 2021, MA2021-01, 1909-1909.	0.0	0
38	Revealing Structure–Activity Links in Hydrazine Oxidation: Doping and Nanostructure in Carbide–Carbon Electrocatalysts. ECS Meeting Abstracts, 2020, MA2020-01, 2084-2084.	0.0	0
39	Alkaline Hydrazine Oxidation Electrocatalysis on Multi-Doped Carbons: Looking for the Active Site. ECS Meeting Abstracts, 2021, MA2021-02, 1221-1221.	0.0	0