Balasubramanian Murugesapandian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2718067/publications.pdf

Version: 2024-02-01

34 papers 1,455 citations

430874 18 h-index 34 g-index

35 all docs 35 docs citations

35 times ranked 1168 citing authors

#	Article	IF	CITATIONS
1	Linear Trinuclear Mixed-Metal Collâ^'Gdlllâ^'Coll Single-Molecule Magnet:  [L2Co2Gd][NO3]·2CHCl3 (LH3 =)	Ţį.ĔTQq1	1 ₁ 9 ₁ 784314
2	Trinuclear Heterobimetallic Ni ₂ Ln complexes [L ₂ Ni ₂ Ln][ClO ₄] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er;) Tj ET	Qq0 0 0 rg 4.0	gBT /Overloc
3	Paramagnetic Complexes to Single-Molecule Magnet Rehavior. Inorganic Chemistry, 2008, 47, 4918-4929. Synthesis, Structure, and Magnetism of Heterobimetallic Trinuclear Complexes {[L ₂ Co ₂ Ln][X]} [Ln = Eu, X = Cl; Ln = Tb, Dy, Ho, X = NO ₃ ; LH ₃ = (S)P[N(Me)Nâ•CHâ°C ₆ H ₃ -2-OH-3-OMe] ₃]: A 3dâ°4f Family of Single-Molecule Magnets. Inorganic Chemistry. 2009, 48, 1148-1157.	4.0	173
4	Cyclophosphazene-based multi-site coordination ligands. Coordination Chemistry Reviews, 2007, 251, 1045-1074.	18.8	158
5	Phosphorus-Supported Ligands for the Assembly of Multimetal Architectures. Accounts of Chemical Research, 2009, 42, 1047-1062.	15.6	101
6	Coumarin based hydrazone as an ICT-based fluorescence chemosensor for the detection of Cu2+ ions and the application in HeLa cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 170-176.	3.9	68
7	Di- and Trinuclear Complexes Derived from Hexakis(2-pyridyloxy)cyclotriphosphazene. Unusual Pâ^'O		

#	Article	IF	CITATIONS
19	36- and 42-Membered cyclophosphazene-containing macrocycles. Tetrahedron Letters, 2006, 47, 8365-8368.	1.4	18
20	Development of C3 symmetric triaminoguanidine-2-naphthol conjugate: Aggregation induced emission, colorimetric and turn-off fluorimetric detection of Co2+ ion, smartphone and real sample applications. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112983.	3.9	18
21	Cyclocarbophosphazene-Containing Tetrameric Assemblies Formed by the Mediation of Pâ^'Oâ^'P and Pâ^'Oâ^'Cu Linkages. Journal of the American Chemical Society, 2006, 128, 6802-6803.	13.7	17
22	Multifunctional behavior of bis-acylhydrazone: Real-time detection of moisture in organic solvents, halochromism and aggregation induced emission. Dyes and Pigments, 2021, 185, 108891.	3.7	15
23	All-in-one type ESIPT-active multi-stimuli responsive 7-diethylamino-4-hydroxycoumarin-rhodamine B hydrazone as molecular switches and the reversible photochromic features of its zinc ensemble. Materials Chemistry Frontiers, 2021, 5, 8183-8196.	5.9	15
24	A new <i>7</i> diethylamino- <i>4</i> hydroxycoumarin based reversible colorimetric/fluorometric probe for sequential detection of Al ³⁺ /PPi and its potential use in biodetection and bioimaging applications. New Journal of Chemistry, 2021, 45, 6067-6079.	2.8	15
25	Sodium and potassium compounds of [(Î-6-benzenecarboxylate) $Cr(CO)3$] and [(Î-6-1,4-benzenedicarboxylate) $Cr(CO)3$]. Dalton Transactions, 2010, 39, 9598.	3.3	13
26	Synthesis and Structures of Cadmium(II) Complexes with (\hat{l} -6-Benzenecarboxylate)tricarbonylchromium. European Journal of Inorganic Chemistry, 2011, 2011, 4103-4108.	2.0	11
27	(Iminophosphoranyl)(thiophosphoranyl)methanide {CH(PPh ₂ NSiMe ₃)(Ph ₂ PS)} ^{â^'} as a Ligand in Rare-Earth-Element Chemistry. Organometallics, 2013, 32, 1500-1506.	2.3	10
28	Dihaloborenium cations stabilized by a four-membered N-heterocyclic carbene: electron deficiency compensation by asymmetric structural changes. Dalton Transactions, 2014, 43, 15313-15316.	3.3	8
29	A phosphorus-based compartmental ligand, (S)P[N(Me)Nî€CH–C6H3-2-O-3-OMe]3 (LH3), enables the assembly of luminescent heterobimetallic linear {L2Zn2Ln}+ [Ln = Gd, Tb, Nd and Eu] complexes. Dalton Transactions, 2013, 42, 15447.	3.3	7
30	Synthesis and Structures of Zinc(II) and Cadmium(II) Complexes with (⟨i⟩η⟨li⟩⟨sup⟩â€Benzenecarboxylate) Chromium Tricarbonyl and Pyrazole Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1818-1823.	1.2	6
31	{CH ₂ (PPh ₂ =NSiMe ₃)(PPh ₂ =S)} and {CH(PPh ₂ =NSiMe ₃)(Ph ₂ P=S)} ^{â€"} as Ligands in Zinc Chemistry: Synthesis and Structures. European Journal of Inorganic Chemistry, 2013, 2013, 4851-4857.	2.0	5
32	Hydrogen bonding networks in [(Î- ⁶ â€arene)Cr(CO) ₃] complexes. Heteroatom Chemistry, 2011, 22, 294-300.	0.7	4
33	Synthesis and Structure of Lead(II) Complexes of (η ⁶ â∈Benzenecarboxylato)tricarbonylchromium. European Journal of Inorganic Chemistry, 2012, 2012, 292-297.	2.0	4
34	Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. Journal of Solid State Chemistry, 2022, 305, 122637.	2.9	1