
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271795/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal experimental designs for ordinal models with mixed factors for industrial and healthcare applications. Journal of Quality Technology, 2022, 54, 184-196.	2.5	5
2	Early palliative care: the surprise question and the palliative care screening tool—better together. BMJ Supportive and Palliative Care, 2022, 12, 211-217.	1.6	16
3	Spatial two-stage designs for phase II clinical trials. Computational Statistics and Data Analysis, 2022, 169, 107420.	1.2	1
4	Optimal designs for health risk assessments using fractional polynomial models. Stochastic Environmental Research and Risk Assessment, 2022, 36, 2695-2710.	4.0	1
5	A model-based approach to designing developmental toxicology experiments using sea urchin embryos. Archives of Toxicology, 2022, 96, 919-932.	4.2	4
6	Particle swarm optimization for searching efficient experimental designs: A review. Wiley Interdisciplinary Reviews: Computational Statistics, 2022, 14, .	3.9	16
7	Orthogonal array composite designs for drug combination experiments with applications for tuberculosis. Statistics in Medicine, 2022, , .	1.6	1
8	An overview of healthcare data analytics with applications to the COVID-19 pandemic. IEEE Transactions on Big Data, 2021, , 1-1.	6.1	10
9	A study design for statistical learning technique to predict radiological progression with an application of idiopathic pulmonary fibrosis using chest CT images. Contemporary Clinical Trials, 2021, 104, 106333.	1.8	3
10	Constructing robust and efficient experimental designs in groundwater modeling using a Galerkin method, proper orthogonal decomposition, and metaheuristic algorithms. PLoS ONE, 2021, 16, e0254620.	2.5	6
11	G-optimal designs for hierarchical linear models: an equivalence theorem and a nature-inspired meta-heuristic algorithm. Soft Computing, 2021, 25, 13549-13565.	3.6	8
12	Pharmacometrics meets statistics—A synergy for modern drug development. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1134-1149.	2.5	9
13	Metaheuristics for pharmacometrics. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1297-1309.	2.5	4
14	Optimal exact designs of experiments via Mixed Integer Nonlinear Programming. Statistics and Computing, 2020, 30, 93-112.	1.5	11
15	Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. Statistical Methods in Medical Research, 2020, 29, 421-436.	1.5	1
16	On Optimal Designs for Clinical Trials: An Updated Review. Journal of Statistical Theory and Practice, 2020, 14, 1.	0.5	10
17	Competitive swarm optimizer with mutated agents for finding optimal designs for nonlinear regression models with multiple interacting factors. Memetic Computing, 2020, 12, 219-233.	4.0	11
18	Using Differential Evolution to design optimal experiments. Chemometrics and Intelligent Laboratory Systems, 2020, 199, 103955.	3.5	13

#	Article	IF	CITATIONS
19	Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions. PLoS ONE, 2020, 15, e0239864.	2.5	7
20	Title is missing!. , 2020, 15, e0239864.		0
21	Title is missing!. , 2020, 15, e0239864.		Ο
22	Title is missing!. , 2020, 15, e0239864.		0
23	Title is missing!. , 2020, 15, e0239864.		0
24	Optimal Designs for Multi-Response Nonlinear Regression Models With Several Factors via Semidefinite Programming. Journal of Computational and Graphical Statistics, 2019, 28, 61-73.	1.7	7
25	Comparison of PREDICTS atherosclerosis biomarker changes after initiation of new treatments in patients with SLE. Lupus Science and Medicine, 2019, 6, e000321.	2.7	11
26	Particle swarm based algorithms for finding locally and Bayesian D-optimal designs. Journal of Statistical Distributions and Applications, 2019, 6, .	1.2	12
27	Prediction of progression in idiopathic pulmonary fibrosis using CT scans at baseline: A quantum particle swarm optimization - Random forest approach. Artificial Intelligence in Medicine, 2019, 100, 101709.	6.5	22
28	Finding High-Dimensional D-Optimal Designs for Logistic Models via Differential Evolution. IEEE Access, 2019, 7, 7133-7146.	4.2	20
29	CVXâ€based algorithms for constructing various optimal regression designs. Canadian Journal of Statistics, 2019, 47, 374-391.	0.9	11
30	A modelâ€based multithreshold method for subgroup identification. Statistics in Medicine, 2019, 38, 2605-2631.	1.6	19
31	A Metaheuristic Adaptive Cubature Based Algorithm to Find Bayesian Optimal Designs for Nonlinear Models. Journal of Computational and Graphical Statistics, 2019, 28, 861-876.	1.7	12
32	Optimal Design of Multiple-Objective Lot Quality Assurance Sampling (LQAS) Plans. Biometrics, 2019, 75, 572-581.	1.4	3
33	T-optimal designs for multi-factor polynomial regression models via a semidefinite relaxation method. Statistics and Computing, 2019, 29, 725-738.	1.5	4
34	<i>d</i> -QPSO: A Quantum-Behaved Particle Swarm Technique for Finding <i>D</i> -Optimal Designs With Discrete and Continuous Factors and a Binary Response. Technometrics, 2019, 61, 77-87.	1.9	23
35	Using SeDuMi to find various optimal designs for regression models. Statistical Papers, 2019, 60, 1583-1603.	1.2	3
36	Phase II two-stage single-arm clinical trials for testing toxicity levels. Communications for Statistical Applications and Methods, 2019, 26, 163-173.	0.3	4

#	Article	IF	CITATIONS
37	Adaptive grid semidefinite programming for finding optimal designs. Statistics and Computing, 2018, 28, 441-460.	1.5	9
38	Extended two-stage adaptive designs with three target responses for phase II clinical trials. Statistical Methods in Medical Research, 2018, 27, 3628-3642.	1.5	14
39	An algorithm based on semidefinite programming for finding minimax optimal designs. Computational Statistics and Data Analysis, 2018, 119, 99-117.	1.2	4
40	Varying-Coefficient Semiparametric Model Averaging Prediction. Biometrics, 2018, 74, 1417-1426.	1.4	25
41	Optimal Treatment Allocations in Space and Time for On-Line Control of an Emerging Infectious Disease. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 743-789.	1.0	20
42	VNM : An <i>R</i> Package for Finding Multiple-Objective Optimal Designs for the 4-Parameter Logistic Model. Journal of Statistical Software, 2018, 83, .	3.7	5
43	Discussion on From Start to Finish: a Framework for the Production of Small Area Official Statistics. Journal of the Royal Statistical Society Series A: Statistics in Society, 2018, 181, 969-970.	1.1	3
44	Maximin Optimal Designs for Cluster Randomized Trials. Biometrics, 2017, 73, 916-926.	1.4	14
45	Standardized maximim D -optimal designs for enzyme kinetic inhibition models. Chemometrics and Intelligent Laboratory Systems, 2017, 169, 79-86.	3.5	23
46	Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs. Computational Statistics and Data Analysis, 2017, 113, 330-345.	1.2	16
47	Detecting the violation of variance homogeneity in mixed models. Statistical Methods in Medical Research, 2016, 25, 2506-2520.	1.5	7
48	Data-driven desirability function to measure patients' disease progression in a longitudinal study. Journal of Applied Statistics, 2016, 43, 783-795.	1.3	2
49	Model-based optimal design of experiments —Semidefinite and nonlinear programming formulations. Chemometrics and Intelligent Laboratory Systems, 2016, 151, 153-163.	3.5	8
50	Optimizing Two-Level Supersaturated Designs Using Swarm Intelligence Techniques. Technometrics, 2016, 58, 43-49.	1.9	31
51	Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programmingâ€Based Approach. International Statistical Review, 2015, 83, 239-262.	1.9	23
52	Polymer properties associated with chemical permeation performance of disposable nitrile rubber gloves. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
53	A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination. Journal of Multivariate Analysis, 2015, 135, 11-24.	1.0	19
54	Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels. International Journal of Biostatistics, 2015, 11, 253-71.	0.7	7

#	Article	IF	CITATIONS
55	Minimax optimal designs via particle swarm optimization methods. Statistics and Computing, 2015, 25, 975-988.	1.5	53
56	A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models. PLoS ONE, 2015, 10, e0124720.	2.5	36
57	RARtool : A <i>MATLAB</i> Software Package for Designing Response-Adaptive Randomized Clinical Trials with Time-to-Event Outcomes. Journal of Statistical Software, 2015, 66, .	3.7	8
58	Adaptive clinical trial designs for phase I cancer studies. Statistics Surveys, 2014, 8, .	11.3	24
59	Novel Statistical Designs for Phase I/II and Phase II Clinical Trials With Dose-Finding Objectives. Therapeutic Innovation and Regulatory Science, 2014, 48, 601-612.	1.6	6
60	Examining radiographic outcomes over time. Rheumatology International, 2014, 34, 271-279.	3.0	4
61	A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models. Statistics and Computing, 2014, 24, 1063-1080.	1.5	19
62	Using animal instincts to design efficient biomedical studies via particle swarm optimization. Swarm and Evolutionary Computation, 2014, 18, 1-10.	8.1	30
63	Application of fractional factorial designs to study drug combinations. Statistics in Medicine, 2013, 32, 307-318.	1.6	50
64	Web-based tools for finding optimal designs in biomedical studies. Computer Methods and Programs in Biomedicine, 2013, 111, 701-710.	4.7	4
65	An augmented approach to the desirability function. Journal of Applied Statistics, 2012, 39, 599-613.	1.3	13
66	Optimal designs for composed models in pharmacokinetic–pharmacodynamic experiments. Journal of Pharmacokinetics and Pharmacodynamics, 2012, 39, 295-311.	1.8	5
67	Doubly adaptive biased coin designs for balancing competing objectives in time-to-event trials. Statistics and Its Interface, 2012, 5, 401-413.	0.3	6
68	Handling missing data issues in clinical trials for rheumatic diseases. Contemporary Clinical Trials, 2011, 32, 1-9.	1.8	20
69	Patterns of radiographic outcomes in early, seropositive rheumatoid arthritis: A baseline analysis. Contemporary Clinical Trials, 2011, 32, 160-168.	1.8	4
70	Optimal Experimental Design Strategies for Detecting Hormesis. Risk Analysis, 2011, 31, 1949-1960.	2.7	8
71	Analysis of a composite endpoint with longitudinal and timeâ€ŧoâ€event data. Statistics in Medicine, 2011, 30, 1018-1027.	1.6	8
72	Optimal responseâ€adaptive randomized designs for multiâ€armed survival trials. Statistics in Medicine, 2011, 30, 2890-2910.	1.6	35

#	Article	IF	CITATIONS
73	Design issues for population growth models. Journal of Applied Statistics, 2011, 38, 501-512.	1.3	3
74	Discussion: A general approach to -optimal designs for weighted univariate polynomial regression models. Journal of the Korean Statistical Society, 2010, 39, 27-30.	0.4	1
75	Selection of covariance patterns for longitudinal data in semi-parametric models. Statistical Methods in Medical Research, 2010, 19, 183-196.	1.5	6
76	The need of considering the interactions in the analysis of screening designs. Journal of Chemometrics, 2009, 23, 545-553.	1.3	28
77	A semi-parametric analysis for identifying Scleroderma patients responsive to an anti-fibrotic agent. Contemporary Clinical Trials, 2009, 30, 105-113.	1.8	9
78	Optimal designs for dose-finding experiments in toxicity studies. Bernoulli, 2009, 15, .	1.3	8
79	Recent developments in nonregular fractional factorial designs. Statistics Surveys, 2009, 3, .	11.3	63
80	Optimum treatment allocation rules under a variance heterogeneity model. Statistics in Medicine, 2008, 27, 4581-4595.	1.6	30
81	A multicenter, randomized, doubleâ€blind, placeboâ€controlled trial of oral type I collagen treatment in patients with diffuse cutaneous systemic sclerosis: I. Oral type I collagen does not improve skin in all patients, but may improve skin in lateâ€phase disease. Arthritis and Rheumatism, 2008, 58, 1810-1822.	6.7	99
82	Optimal minimax designs over a prespecified interval in a heteroscedastic polynomial model. Statistics and Probability Letters, 2008, 78, 1914-1921.	0.7	10
83	Assessing disease progression using a composite endpoint. Statistical Methods in Medical Research, 2007, 16, 31-49.	1.5	11
84	Classifying radiographic progression status in early rheumatoid arthritis patients using propensity scores to adjust for baseline differences. Statistical Methods in Medical Research, 2007, 16, 13-29.	1.5	11
85	A reanalysis of a longitudinal scleroderma clinical trial using non-ignorable missingness models. Journal of Statistical Planning and Inference, 2007, 137, 3848-3858.	0.6	4
86	Association of tumor necrosis factor α polymorphism, but not the shared epitope, with increased radiographic progression in a seropositive rheumatoid arthritis inception cohort. Arthritis and Rheumatism, 2006, 54, 1105-1116.	6.7	49
87	Bayesian Optimal Designs for a Quantal Dose-Response Study with Potentially Missing Observations. Journal of Biopharmaceutical Statistics, 2006, 16, 679-693.	0.8	4
88	Design: Designing Studies for Dose Response. , 2005, , 315-333.		1
89	On the equivalence of optimality design criteria for the placebo–treatment problem. Statistics and Probability Letters, 2005, 74, 337-346.	0.7	6
90	Robustness Properties of Multiple-Objective Optimal Designs for a Bi-Exponential Model. Drug Information Journal, 2005, 39, 223-232.	0.5	0

#	Article	IF	CITATIONS
91	Optimal Design for Goodness-of-Fit of the Michaelis–Menten Enzyme Kinetic Function. Journal of the American Statistical Association, 2005, 100, 1370-1381.	3.1	40
92	Optimal designs for the power logistic model. Journal of Statistical Computation and Simulation, 2004, 74, 779-791.	1.2	7
93	Classifying structural joint damage in rheumatoid arthritis as progressive or nonprogressive using a composite definition of joint radiographic change: A preliminary proposal. Arthritis and Rheumatism, 2004, 50, 1083-1096.	6.7	19
94	Optimal design of experiments with anticipated pattern of missing observations. Journal of Theoretical Biology, 2004, 228, 251-260.	1.7	13
95	Dating the "window of therapeutic opportunity" in early rheumatoid arthritis: accuracy of patient recall of arthritis symptom onset. Journal of Rheumatology, 2004, 31, 1686-92.	2.0	26
96	Correlation of single time-point damage scores with observed progression of radiographic damage during the first 6 years of rheumatoid arthritis. Journal of Rheumatology, 2003, 30, 705-13.	2.0	24
97	Predictors and outcomes of scleroderma renal crisis: The high-dose versus low-dose D-penicillamine in early diffuse systemic sclerosis trial. Arthritis and Rheumatism, 2002, 46, 2983-2989.	6.7	194
98	Design Issues for the Michaelis–Menten Model. Journal of Theoretical Biology, 2002, 215, 1-11.	1.7	63
99	Bayesian optimal designs for estimating a set of symmetrical quantiles. Statistics in Medicine, 2001, 20, 123-137.	1.6	20
100	The Disability Index of the Health Assessment Questionnaire is a predictor and correlate of outcome in the high-dose versus low-dose penicillamine in systemic sclerosis trial. Arthritis and Rheumatism, 2001, 44, 653-661.	6.7	96
101	Robustness properties of minimally-supported Bayesian D-optimal designs for heteroscedastic models. Canadian Journal of Statistics, 2001, 29, 633-647.	0.9	2
102	Optimal treatment allocation in comparative biomedical studies. , 2000, 19, 639-648.		20
103	Skin thickness score as a predictor and correlate of outcome in systemic sclerosis: High-dose versus low-dose penicillamine trial. Arthritis and Rheumatism, 2000, 43, 2445-2454.	6.7	252
104	Relative contributions of the components of the American College of Rheumatology 20% criteria for improvement to responder status in patients with early seropositive rheumatoid arthritis. Arthritis and Rheumatism, 2000, 43, 2743-2750.	6.7	21
105	A Graphical Method for Finding Maximin Efficiency Designs. Biometrics, 2000, 56, 113-117.	1.4	24
106	Minimax d-optimal designs for item response theory models. Psychometrika, 2000, 65, 377-390.	2.1	35
107	MULTIPLE-OBJECTIVE DESIGNS IN A DOSE-RESPONSE EXPERIMENT. Journal of Biopharmaceutical Statistics, 2000, 10, 1-14.	0.8	21
108	Optimum treatment allocation for dual-objective clinical trials with binary outcomes. Communications in Statistics - Theory and Methods, 2000, 29, 957-974.	1.0	9

#	Article	IF	CITATIONS
109	Dual-Objective Bayesian Optimal Designs for a Dose-Ranging Study. Drug Information Journal, 2000, 34, 421-428.	0.5	9
110	E-optimal designs for the Michaelis–Menten model. Statistics and Probability Letters, 1999, 44, 405-408.	0.7	25
111	Recent advances in multipleâ€objective design strategies. Statistica Neerlandica, 1999, 53, 257-276.	1.6	20
112	Optimal Designs When the Variance Is A Function of the Mean. Biometrics, 1999, 55, 925-929.	1.4	19
113	Correlates of the disability index of the health assessment questionnaire: A measure of functional impairment in systemic sclerosis. Arthritis and Rheumatism, 1999, 42, 2372-2380.	6.7	96
114	Optimal minimax designs for prediction in heteroscedastic models. Journal of Statistical Planning and Inference, 1998, 69, 371-383.	0.6	11
115	Optimal two-point designs for the michaelis-menten model with heteroscedastic errors. Communications in Statistics - Theory and Methods, 1998, 27, 1503-1516.	1.0	15
116	Multiple-objective optimal designs for the logit model. Communications in Statistics - Theory and Methods, 1998, 27, 1581-1592.	1.0	17
117	Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models. Biometrika, 1998, 85, 869-882.	2.4	20
118	The relationship between socioeconomic status and recently diagnosed rheumatoid arthritis. Arthritis and Rheumatism, 1996, 9, 457-462.	6.7	27
119	Optimal Bayesian designs for models with partially specified heteroscedastic structure. Annals of Statistics, 1996, 24, 2108.	2.6	15
120	DESIGNING STUDIES FOR DOSE RESPONSE. , 1996, 15, 343-359.		33
121	On the equivalence of D and G-optimal designs in heteroscedastic models. Statistics and Probability Letters, 1995, 25, 317-321.	0.7	9
122	On the Equivalence of Constrained and Compound Optimal Designs. Journal of the American Statistical Association, 1994, 89, 687-692.	3.1	136
123	Comparing robust properties of A, D, E and G-optimal designs. Computational Statistics and Data Analysis, 1994, 18, 441-448.	1.2	28
124	Equivalence theorems for c and DAâ€optimality for linear mixed effects models with applications to multitreatment group assignments in health care. Scandinavian Journal of Statistics, 0, , .	1.4	1