
Paul T Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4318-4322.	3.3	235
2	Wound repair: a showcase for cell plasticity and migration. Current Opinion in Cell Biology, 2016, 42, 29-37.	2.6	165
3	Synaptic Integrins in Developing, Adult, and Mutant Muscle: Selective Association of α1, α7A, and α7B Integrins with the Neuromuscular Junction. Developmental Biology, 1996, 174, 125-139.	0.9	162
4	Corpse Engulfment Generates a Molecular Memory that Primes the Macrophage Inflammatory Response. Cell, 2016, 165, 1658-1671.	13.5	160
5	Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5616-5621.	3.3	137
6	Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Developmental Neurobiology, 2011, 71, 982-1005.	1.5	127
7	A Human-Specific Deletion in Mouse <i>Cmah</i> Increases Disease Severity in the mdx Model of Duchenne Muscular Dystrophy. Science Translational Medicine, 2010, 2, 42ra54.	5.8	91
8	Fat Body Cells Are Motile and Actively Migrate to Wounds to Drive Repair and Prevent Infection. Developmental Cell, 2018, 44, 460-470.e3.	3.1	90
9	Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology, 2003, 13, 55R-66.	1.3	83
10	Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Developmental Cell, 2017, 40, 221-233.	3.1	79
11	Overexpression of <i>Galgt2</i> in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. American Journal of Physiology - Cell Physiology, 2009, 296, C476-C488.	2.1	78
12	Distribution of ten laminin chains in dystrophic and regenerating muscles. Neuromuscular Disorders, 1999, 9, 423-433.	0.3	77
13	Overexpression of the CT GalNAc Transferase in Skeletal Muscle Alters Myofiber Growth, Neuromuscular Structure, and Laminin Expression. Developmental Biology, 2002, 242, 58-73.	0.9	74
14	Glycobiology of neuromuscular disorders. Glycobiology, 2003, 13, 67R-75.	1.3	70
15	Terlipressin for Hepatorenal Syndrome: A Meta-Analysis of Randomized Trials. International Journal of Artificial Organs, 2009, 32, 133-140.	0.7	66
16	The Dystroglycanopathies: The New Disorders of O-Linked Glycosylation. Seminars in Pediatric Neurology, 2005, 12, 152-158.	1.0	65
17	Glycobiology of the synapse. Glycobiology, 2002, 12, 1R-7.	1.3	62
18	Glycobiology of the neuromuscular junction. Journal of Neurocytology, 2003, 32, 915-929.	1.6	61

#	Article	IF	CITATIONS
19	Congenital Muscular Dystrophies Involving the O-Mannose Pathway. Current Molecular Medicine, 2007, 7, 417-425.	0.6	61
20	Vascular Delivery of rAAVrh74.MCK.GALGT2 to the Gastrocnemius Muscle of the Rhesus Macaque Stimulates the Expression of Dystrophin and Laminin α2 Surrogates. Molecular Therapy, 2014, 22, 713-724.	3.7	61
21	The Congenital Muscular Dystrophies: Recent Advances and Molecular Insights. Pediatric and Developmental Pathology, 2006, 9, 427-443.	0.5	60
22	Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization. Cell Reports, 2015, 13, 1380-1395.	2.9	60
23	Distinct Structures and Functions of Related Pre- and Postsynaptic Carbohydrates at the Mammalian Neuromuscular Junction. Molecular and Cellular Neurosciences, 1999, 13, 105-118.	1.0	58
24	Inhibition of dystroglycan cleavage causes muscular dystrophy in transgenic mice. Neuromuscular Disorders, 2003, 13, 365-375.	0.3	54
25	Overexpression of the Cytotoxic T Cell (CT) Carbohydrate Inhibits Muscular Dystrophy in the dyW Mouse Model of Congenital Muscular Dystrophy 1A. American Journal of Pathology, 2007, 171, 181-199.	1.9	54
26	Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. Journal of Cell Biology, 2012, 197, 1009-1027.	2.3	54
27	Systems Analysis of the Dynamic Inflammatory Response to Tissue Damage Reveals Spatiotemporal Properties of the Wound Attractant Gradient. Current Biology, 2016, 26, 1975-1989.	1.8	48
28	Overexpression of Galgt2 Reduces Dystrophic Pathology in the Skeletal Muscles of Alpha Sarcoglycan-Deficient Mice. American Journal of Pathology, 2009, 175, 235-247.	1.9	47
29	Postnatal overexpression of the CT GalNAc transferase inhibits muscular dystrophy in mdx mice without altering muscle growth or neuromuscular development: Evidence for a utrophin-independent mechanism. Neuromuscular Disorders, 2007, 17, 209-220.	0.3	45
30	Mice Lacking Dystrophin or α Sarcoglycan Spontaneously Develop Embryonal Rhabdomyosarcoma with Cancer-Associated p53 Mutations and Alternatively Spliced or Mutant Mdm2 Transcripts. American Journal of Pathology, 2010, 176, 416-434.	1.9	45
31	Live imaging of collagen deposition during skin development and repair in a collagen I – GFP fusion transgenic zebrafish line. Developmental Biology, 2018, 441, 4-11.	0.9	43
32	Mechanisms of Disease: congenital muscular dystrophies—glycosylation takes center stage. Nature Clinical Practice Neurology, 2006, 2, 222-230.	2.7	42
33	Comparative Proteomic Profiling of Dystroglycan-Associated Proteins in Wild Type, <i>mdx</i> , and <i>Galgt2</i> Transgenic Mouse Skeletal Muscle. Journal of Proteome Research, 2012, 11, 4413-4424.	1.8	41
34	N-Acetyllactosamine and the CT Carbohydrate Antigen Mediate Agrin-Dependent Activation of MuSK and Acetylcholine Receptor Clustering in Skeletal Muscle. Molecular and Cellular Neurosciences, 2000, 15, 380-397.	1.0	40
35	Definition of pre- and postsynaptic forms of the CT carbohydrate antigen at the neuromuscular junction: ubiquitous expression of the CT antigens and the CT GalNAc transferase in mouse tissues. Molecular Brain Research, 2002, 109, 146-160.	2.5	40
36	New treatment for hepatitis C in chronic kidney disease, dialysis, and transplant. Kidney International, 2016, 89, 988-994.	2.6	40

#	Article	IF	CITATIONS
37	Loss of CMAH during Human Evolution Primed the Monocyte–Macrophage Lineage toward a More Inflammatory and Phagocytic State. Journal of Immunology, 2017, 198, 2366-2373.	0.4	37
38	Muscular dystrophy associated with α-dystroglycan deficiency in Sphynx and Devon Rex cats. Neuromuscular Disorders, 2008, 18, 942-952.	0.3	36
39	B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I. American Journal of Pathology, 2016, 186, 2429-2448.	1.9	36
40	Proteolytic and Opportunistic Breaching of the Basement Membrane Zone by Immune Cells during Tumor Initiation. Cell Reports, 2019, 27, 2837-2846.e4.	2.9	36
41	The synaptic CT carbohydrate modulates binding and expression of extracellular matrix proteins in skeletal muscle: Partial dependence on utrophin. Molecular and Cellular Neurosciences, 2009, 41, 448-463.	1.0	35
42	O-fucosylation of muscle agrin determines its ability to cluster acetylcholine receptors. Molecular and Cellular Neurosciences, 2008, 39, 452-464.	1.0	34
43	Identification of New Dystroglycan Complexes in Skeletal Muscle. PLoS ONE, 2013, 8, e73224.	1.1	34
44	Hepatitis C virus increases the risk of kidney disease among HIVâ€positive patients: Systematic review and metaâ€analysis. Journal of Medical Virology, 2016, 88, 487-497.	2.5	34
45	Chronic Kidney Disease after Liver Transplantation: Recent Evidence. International Journal of Artificial Organs, 2010, 33, 803-811.	0.7	31
46	Modulation of Agrin Binding and Activity by the CT and Related Carbohydrate Antigens. Molecular and Cellular Neurosciences, 2002, 19, 539-551.	1.0	29
47	Comparison of Serum rAAV Serotype-Specific Antibodies in Patients with Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, Inclusion Body Myositis, or GNE Myopathy. Human Gene Therapy, 2017, 28, 737-746.	1.4	27
48	rAAVrh74.MCK.GALGT2 Protects against Loss of Hemodynamic Function in the Aging mdx Mouse Heart. Molecular Therapy, 2019, 27, 636-649.	3.7	27
49	Transgenic Overexpression of Dystroglycan Does Not Inhibit Muscular Dystrophy in mdx Mice. American Journal of Pathology, 2004, 164, 711-718.	1.9	24
50	Identification of peptides that specifically bind Aβ1–40 amyloid in vitro and amyloid plaques in Alzheimer's disease brain using phage display. Neurobiology of Disease, 2003, 14, 146-156.	2.1	23
51	Induction of a regenerative microenvironment in skeletal muscle is sufficient to induce embryonal rhabdomyosarcoma in p53â€deficient mice. Journal of Pathology, 2012, 226, 40-49.	2.1	22
52	Injury Activates a Dynamic Cytoprotective Network to Confer Stress Resilience and Drive Repair. Current Biology, 2019, 29, 3851-3862.e4.	1.8	22
53	Genetic Defects in Muscular Dystrophy. Methods in Enzymology, 2010, 479, 291-322.	0.4	21
54	Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice. American Journal of Pathology, 2015, 185, 2668-2684.	1.9	20

#	Article	IF	CITATIONS
55	A Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle. PLoS ONE, 2014, 9, e88226.	1.1	19
56	Induction of T-Cell Infiltration and Programmed Death Ligand 2 Expression by Adeno-Associated Virus in Rhesus Macaque Skeletal Muscle and Modulation by Prednisone. Human Gene Therapy, 2017, 28, 493-509.	1.4	17
57	N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice. Glycobiology, 2013, 23, 833-843.	1.3	16
58	rAAVrh74.MCK.GALGT2 Demonstrates Safety and Widespread Muscle Glycosylation after Intravenous Delivery in C57BL/6J Mice. Molecular Therapy - Methods and Clinical Development, 2019, 15, 305-319.	1.8	15
59	Tests for acute and chronic viral hepatitis. Postgraduate Medicine, 2000, 107, 123-130.	0.9	14
60	An Isolated Limb Infusion Method Allows for Broad Distribution of rAAVrh74.MCK.GALGT2 to Leg Skeletal Muscles in the Rhesus Macaque. Molecular Therapy - Methods and Clinical Development, 2018, 10, 89-104.	1.8	14
61	Role of transcription factors in skeletal muscle and the potential for pharmacological manipulation. Current Opinion in Pharmacology, 2003, 3, 300-308.	1.7	13
62	A role for Galgt1 in skeletal muscle regeneration. Skeletal Muscle, 2015, 5, 3.	1.9	13
63	Therapy with Nucleos(t)ide Analogues: Current Role in Dialysis Patients. International Journal of Artificial Organs, 2010, 33, 329-338.	0.7	12
64	Novel evidence on hepatitis C virus–associated glomerular disease. Kidney International, 2014, 86, 466-469.	2.6	12
65	Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of <i>GALGT2</i> Expression and <i>GALGT2</i> -Dependent Muscle and Neuromuscular Phenotypes. Molecular and Cellular Biology, 2019, 39, .	1.1	12
66	Distinct contributions of Galgt1 and Galgt2 to carbohydrate expression and function at the mouse neuromuscular junction. Molecular and Cellular Neurosciences, 2012, 51, 112-126.	1.0	11
67	Novel Perspectives on the Hepatitis B Virus Vaccine in the Chronic Kidney Disease Population. International Journal of Artificial Organs, 2015, 38, 625-631.	0.7	11
68	Deletion of <i>Pofut1</i> in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in <i>cis</i> and in <i>trans</i> . Molecular and Cellular Biology, 2017, 37, .	1.1	11
69	Overexpression of the CT GalNAc transferase inhibits muscular dystrophy in a cleavage-resistant dystroglycan mutant mouse. Biochemical and Biophysical Research Communications, 2003, 302, 831-836.	1.0	10
70	Immunization with the SDPM1 peptide lowers amyloid plaque burden and improves cognitive function in the APPswePSEN1(A246E) transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 2010, 39, 409-422.	2.1	10
71	The Unravelled Link between Chronic Kidney Disease and Hepatitis C Infection. New Journal of Science, 2014, 2014, 1-9.	1.0	10
72	N-terminal α Dystroglycan (αDG-N): AÂPotential Serum Biomarker for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2016, 3, 247-260.	1.1	10

#	Article	IF	CITATIONS
73	Expansion of B4GALT7 linkeropathy phenotype to include perinatal lethal skeletal dysplasia. European Journal of Human Genetics, 2019, 27, 1569-1577.	1.4	10
74	Accurate Reconstruction of Cell and Particle Tracks from 3D Live Imaging Data. Cell Systems, 2016, 3, 102-107.	2.9	8
75	Embryonic overexpression of <i>Galgt2</i> inhibits skeletal muscle growth via activation of myostatin signaling. Muscle and Nerve, 2009, 39, 25-41.	1.0	7
76	Ombitasvir, Paritaprevir, Ritonavir, andÂDasabuvir With or Without Ribavirin inÂPatients With Kidney Disease. Kidney International Reports, 2019, 4, 245-256.	0.4	7
77	Short-term treatment of golden retriever muscular dystrophy (GRMD) dogs with rAAVrh74.MHCK7.GALGT2 induces muscle glycosylation and utrophin expression but has no significant effect on muscle strength. PLoS ONE, 2021, 16, e0248721.	1.1	7
78	Micro-laminin gene therapy can function as an inhibitor of muscle disease in the dyW mouse model of MDC1A. Molecular Therapy - Methods and Clinical Development, 2021, 21, 274-287.	1.8	7
79	Visualizing Muscle Sialic Acid Expression in the GNED207VTgGne-/- Cmah-/- Model of GNE Myopathy: A Comparison of Dietary and Gene Therapy Approaches. Journal of Neuromuscular Diseases, 2022, 9, 53-71.	1.1	6
80	The Evidence-Based Epidemiology of HCV-Associated Kidney Disease. International Journal of Artificial Organs, 2012, 35, 621-628.	0.7	5
81	Active and passive immunization strategies based on the SDPM1 peptide demonstrate pre-clinical efficacy in the APPswePSEN1dE9 mouse model for Alzheimer's disease. Neurobiology of Disease, 2014, 62, 31-43.	2.1	5
82	Serum Antibodies to N-Glycolylneuraminic Acid Are Elevated in Duchenne Muscular Dystrophy and Correlate with Increased Disease Pathology in Cmahmdx Mice. American Journal of Pathology, 2021, 191, 1474-1486.	1.9	4
83	A Method to Produce and Purify Recombinant Full-Length Recombinant Alpha Dystroglycan: Analysis of N- and O-Linked Monosaccharide Composition in CHO Cells with or without LARGE Overexpression. PLOS Currents, 2013, 5, .	1.4	4
84	Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility. Seminars in Cell and Developmental Biology, 2020, 100, 160-166.	2.3	2
85	Absence of Hepatitis B Resistance Mutants before Introduction of Oral Antiviral Therapy. ISRN Hepatology, 2013, 2013, 1-5.	0.9	2
86	Treatment of hepatitis C. Current Hepatitis Reports, 2003, 2, 3-8.	0.3	1
87	Liver disease. Postgraduate Medicine, 2000, 107, 95-96.	0.9	0
88	Management of Chronic Hepatitis B in Special Populations: Immunosuppressed Patients and Chronic Kidney Disease. Current Hepatitis Reports, 2011, 10, 269-276.	0.3	0
89	Are High-Dose Steroids Really Necessary in Treatment of Autoimmune Hepatitis?. Clinical Gastroenterology and Hepatology, 2019, 17, 1948-1949.	2.4	0
90	Management of HCV in Dialysis Patients. , 0, , 50-54.		0