
Michael J. Mina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717764/publications.pdf Version: 2024-02-01

MICHAEL MINA

#	Article	lF	CITATIONS
1	Mathematical Modeling to Inform Vaccination Strategies and Testing Approaches for Coronavirus Disease 2019 (COVID-19) in Nursing Homes. Clinical Infectious Diseases, 2022, 74, 597-603.	5.8	29
2	Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science, 2022, 375, 296-301.	12.6	892
3	Assessing the Effects of Measles Virus Infections on Childhood Infectious Disease Mortality in Brazil. Journal of Infectious Diseases, 2022, 227, 133-140.	4.0	4
4	Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Science Advances, 2021, 7, .	10.3	889
5	Estimating internationally imported cases during the early COVID-19 pandemic. Nature Communications, 2021, 12, 311.	12.8	35
6	COVID-19 testing: One size does not fit all. Science, 2021, 371, 126-127.	12.6	159
7	Structural basis for antibody inhibition of flavivirus NS1–triggered endothelial dysfunction. Science, 2021, 371, 194-200.	12.6	74
8	Partial immunity and SARS-CoV-2 mutations—Response. Science, 2021, 372, 354-355.	12.6	2
9	Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19. Lancet, The, 2021, 397, 1425-1427.	13.7	143
10	Using viral load and epidemic dynamics to optimize pooled testing in resource-constrained settings. Science Translational Medicine, 2021, 13, .	12.4	42
11	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	12.6	185
12	Estimation of Transmission of COVID-19 in Simulated Nursing Homes With Frequent Testing and Immunity-Based Staffing. JAMA Network Open, 2021, 4, e2110071.	5.9	55
13	Predicting the need for massive transfusion: Prospective validation of a smartphone-based clinical decision support tool. Surgery, 2021, 170, 1574-1580.	1.9	7
14	Immune age and biological age as determinants of vaccine responsiveness among elderly populations: the Human Immunomics Initiative research program. European Journal of Epidemiology, 2021, 36, 753-762.	5.7	9
15	Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science, 2021, 373, .	12.6	148
16	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	12.6	80
17	Recalibrating SARS-CoV-2 Antigen Rapid Lateral Flow Test Relative Sensitivity from Validation Studies to Absolute Sensitivity for Indicating Individuals Shedding Transmissible Virus. Clinical Epidemiology, 2021, Volume 13, 935-940.	3.0	27
18	Development of at-home sample collection logistics for large-scale seroprevalence studies. PLoS ONE, 2021, 16, e0258516.	2.5	2

Michael J. Mina

#	Article	IF	CITATIONS
19	TIPICO XI: report of the first series and podcast on infectious diseases and vaccines (aTIPICO). Human Vaccines and Immunotherapeutics, 2021, 17, 4299-4327.	3.3	0
20	Rethinking Covid-19 Test Sensitivity — A Strategy for Containment. New England Journal of Medicine, 2020, 383, e120.	27.0	648
21	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370, 811-818.	12.6	210
22	Serology for SARS-CoV-2: Apprehensions, opportunities, and the path forward. Science Immunology, 2020, 5, .	11.9	138
23	To Interpret the SARS-CoV-2 Test, Consider the Cycle Threshold Value. Clinical Infectious Diseases, 2020, 71, 2252-2254.	5.8	323
24	Waning immunity and re-emergence of measles and mumps in the vaccine era. Current Opinion in Virology, 2020, 40, 48-54.	5.4	26
25	Antibody testing will enhance the power and accuracy of COVID-19-prevention trials. Nature Medicine, 2020, 26, 818-819.	30.7	45
26	A Global Immunological Observatory to meet a time of pandemics. ELife, 2020, 9, .	6.0	52
27	Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. Nature Ecology and Evolution, 2019, 3, 1253-1264.	7.8	28
28	Passive immunity for the treatment of influenza: quality not quantity. Lancet Respiratory Medicine,the, 2019, 7, 922-923.	10.7	11
29	Measles vaccine immune escape: Should we be concerned?. European Journal of Epidemiology, 2019, 34, 893-896.	5.7	10
30	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	12.6	294
31	Response to Comment on "Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality― Science, 2019, 365, .	12.6	7
32	Impact and longevity of measles-associated immune suppression: a matched cohort study using data from the THIN general practice database in the UK. BMJ Open, 2018, 8, e021465.	1.9	38
33	Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathogens, 2018, 14, e1007493.	4.7	11
34	Assessment of CD52 expression in "double-hit" and "double-expressor" lymphomas: Implications for clinical trial eligibility. PLoS ONE, 2018, 13, e0199708.	2.5	4
35	Opportunities and challenges of a World Serum Bank – Authors' reply. Lancet, The, 2017, 389, 252.	13.7	12
36	Drivers of airborne human-to-human pathogen transmission. Current Opinion in Virology, 2017, 22, 22-29.	5.4	81

Michael J. Mina

#	Article	IF	CITATIONS
37	Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits. Journal of Infection, 2017, 74, S10-S17.	3.3	41
38	Generalized herd effects and vaccine evaluation: impact of live influenza vaccine on off-target bacterial colonisation. Journal of Infection, 2017, 74, S101-S107.	3.3	8
39	Factors affecting mortality after penetrating cardiac injuries: 10-year experience at urban level I trauma center. American Journal of Surgery, 2017, 213, 1109-1115.	1.8	33
40	Long-term survival following in-hospital cardiac arrest: A matched cohort study. Resuscitation, 2016, 99, 72-78.	3.0	31
41	Live Attenuated Influenza Virus Increases Pneumococcal Translocation and Persistence Within the Middle Ear. Journal of Infectious Diseases, 2015, 212, 195-201.	4.0	21
42	The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends in Microbiology, 2015, 23, 537-544.	7.7	36
43	Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, 348, 694-699.	12.6	319
44	Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice. MBio, 2014, 5, .	4.1	83
45	Reply to "No Clinical Association of Live Attenuated Influenza Vaccine with Nasal Carriage of Bacteria or Acute Otitis Mediaâ€: Specific Recommendations for Future Studies. MBio, 2014, 5, e01173-14.	4.1	4
46	The role of influenza in the severity and transmission of respiratory bacterial disease. Lancet Respiratory Medicine,the, 2014, 2, 750-763.	10.7	62
47	Live Attenuated Influenza Vaccine, But Not Pneumococcal Conjugate Vaccine, Protects Against Increased Density and Duration of Pneumococcal Carriage After Influenza Infection in Pneumococcal Colonized Mice. Journal of Infectious Diseases, 2013, 208, 1281-1285.	4.0	43
48	Let technology do the work. Journal of Trauma and Acute Care Surgery, 2013, 75, 669-675.	2.1	27
49	Pathogen Replication, Host Inflammation, and Disease in the Upper Respiratory Tract. Infection and Immunity, 2013, 81, 625-628.	2.2	15
50	Base deficit as a marker of survival after traumatic injury. Journal of Trauma, 2012, 72, 844-851.	2.3	38