Jose M M Caaveiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271762/publications.pdf

Version: 2024-02-01

74 papers

2,082 citations

257450 24 h-index 254184 43 g-index

79 all docs

79 docs citations

79 times ranked 2883 citing authors

#	Article	IF	CITATIONS
1	Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nature Communications, 2015, 6, 6337.	12.8	185
2	Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina. Journal of Biological Chemistry, 2004, 279, 34209-34216.	3.4	118
3	Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI. Nature Communications, 2015, 6, 6866.	12.8	109
4	Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole. Journal of the American Chemical Society, 2008, 130, 13696-13708.	13.7	91
5	Selective and reversible modification of kinase cysteines with chlorofluoroacetamides. Nature Chemical Biology, 2019, 15, 250-258.	8.0	90
6	Affinity Improvement of a Therapeutic Antibody by Structure-Based Computational Design: Generation of Electrostatic Interactions in the Transition State Stabilizes the Antibody-Antigen Complex. PLoS ONE, 2014, 9, e87099.	2.5	78
7	Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase. Journal of Computer-Aided Molecular Design, 2009, 23, 491-500.	2.9	77
8	Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Letters, 1997, 410, 338-342.	2.8	74
9	Differential Interaction of Equinatoxin II with Model Membranes in Response to Lipid Composition. Biophysical Journal, 2001, 80, 1343-1353.	0.5	74
10	Structural analysis of Fc/FcĴ³R complexes: a blueprint for antibody design. Immunological Reviews, 2015, 268, 201-221.	6.0	68
11	Glycosylation of IgG-Fc: a molecular perspective. International Immunology, 2017, 29, 311-317.	4.0	57
12	Catalytic activity of MsbA reconstituted in nanodisc particles is modulated by remote interactions with the bilayer. FEBS Letters, 2011, 585, 3533-3537.	2.8	54
13	Assessing the Heterogeneity of the Fc-Glycan of a Therapeutic Antibody Using an engineered FcÎ ³ Receptor Illa-Immobilized Column. Scientific Reports, 2018, 8, 3955.	3.3	48
14	A pathway for the thermal destabilization of bacteriorhodopsin. FEBS Letters, 1995, 367, 297-300.	2.8	44
15	Molecular Basis of Recognition of Antibacterial Porphyrins by Heme-Transporter IsdH-NEAT3 of Staphylococcus aureus. Biochemistry, 2011, 50, 7311-7320.	2.5	44
16	Mapping Ultra-weak Protein-Protein Interactions between Heme Transporters of Staphylococcus aureus. Journal of Biological Chemistry, 2012, 287, 16477-16487.	3.4	43
17	The Atomic Structure of the HIV-1 gp41 Transmembrane Domain and Its Connection to the Immunogenic Membrane-proximal External Region. Journal of Biological Chemistry, 2015, 290, 12999-13015.	3.4	37
18	Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2552-61.	7.1	36

#	Article	IF	CITATIONS
19	Structural and thermodynamic basis for the recognition of the substrate-binding cleft on hen egg lysozyme by a single-domain antibody. Scientific Reports, 2019, 9, 15481.	3.3	36
20	Structural basis for broad neutralization of HIV-1 through the molecular recognition of 10E8 helical epitope at the membrane interface. Scientific Reports, 2016, 6, 38177.	3.3	34
21	Hydrogen Bond Coupling in the Ketosteroid Isomerase Active Site. Biochemistry, 2009, 48, 6932-6939.	2.5	31
22	A Pore-Forming Toxin Requires a Specific Residue for Its Activity in Membranes with Particular Physicochemical Properties. Journal of Biological Chemistry, 2015, 290, 10850-10861.	3.4	31
23	Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. ACS Chemical Biology, 2018, 13, 2783-2793.	3.4	27
24	Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins. Biochemistry, 2016, 55, 6630-6641.	2.5	26
25	Dynamic elements govern the catalytic activity of CapE, a capsular polysaccharideâ€synthesizing enzyme from <i>Staphylococcus aureus</i> . FEBS Letters, 2013, 587, 3824-3830.	2.8	24
26	Interaction of wheat αâ€thionin with large unilamellar vesicles. Protein Science, 1998, 7, 2567-2577.	7.6	23
27	Binding of Hydrophobic Hydroxamic Acids Enhances Peroxidase's Stereoselectivity in Nonaqueous Sulfoxidations. Journal of the American Chemical Society, 2002, 124, 782-787.	13.7	23
28	Identification of a Membrane-bound Prepore Species Clarifies the Lytic Mechanism of Actinoporins. Journal of Biological Chemistry, 2016, 291, 19210-19219.	3.4	23
29	Discovery and characterization of natural tropolones as inhibitors of the antibacterial target CapF from Staphylococcus aureus. Scientific Reports, 2015, 5, 15337.	3.3	22
30	Structural and Thermodynamic Basis of Epitope Binding by Neutralizing and Nonneutralizing Forms of the Anti-HIV-1 Antibody 4E10. Journal of Virology, 2015, 89, 11975-11989.	3.4	22
31	Selective binding of antimicrobial porphyrins to the hemeâ€receptor IsdHâ€NEAT3 of <i>Staphylococcus aureus</i> . Protein Science, 2013, 22, 942-953.	7.6	20
32	Functional characterization of Val60, a key residue involved in the membraneâ€oligomerization of fragaceatoxin C, an actinoporin from <i>Actinia fragacea</i> . FEBS Letters, 2015, 589, 1840-1846.	2.8	20
33	Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism. Structure, 2016, 24, 1523-1536.	3.3	20
34	Contributions of Interfacial Residues of Human Interleukin 15 to the Specificity and Affinity for Its Private α-Receptor. Journal of Molecular Biology, 2009, 389, 880-894.	4.2	19
35	Heme Binding Mechanism of Structurally Similar Iron-Regulated Surface Determinant Near Transporter Domains ofStaphylococcus aureusExhibiting Different Affinities for Heme. Biochemistry, 2013, 52, 8866-8877.	2.5	19
36	Thermodynamic and Structural Characterization of the Specific Binding of Zn(II) to Human Protein DJ-1. Biochemistry, 2014, 53, 2218-2220.	2.5	19

#	Article	IF	CITATIONS
37	Incorporation of Rapid Thermodynamic Data in Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2013, 56, 2155-2159.	6.4	18
38	Disruption of cell adhesion by an antibody targeting the cell-adhesive intermediate (X-dimer) of human P-cadherin. Scientific Reports, 2017, 7, 39518.	3.3	18
39	Molecular basis for governing the morphology of type-I collagen fibrils by Osteomodulin. Communications Biology, $2018,1,33.$	4.4	18
40	Identification and Characterization of the X-Dimer of Human P-Cadherin: Implications for Homophilic Cell Adhesion. Biochemistry, 2014, 53, 1742-1752.	2.5	17
41	Crystal structure of the capsular polysaccharide synthesizing protein CapE of Staphylococcus aureus. Bioscience Reports, 2013, 33, .	2.4	16
42	Bidirectional Transformation of a Metamorphic Protein between the Water-Soluble and Transmembrane Native States. Biochemistry, 2015, 54, 6863-6866.	2.5	15
43	Functional Contacts between MPER and the Anti-HIV-1 Broadly Neutralizing Antibody 4E10 Extend into the Core of the Membrane. Journal of Molecular Biology, 2017, 429, 1213-1226.	4.2	14
44	The Isolation of New Pore-Forming Toxins from the Sea Anemone Actinia fragacea Provides Insights into the Mechanisms of Actinoporin Evolution. Toxins, 2019, 11, 401.	3.4	14
45	Tyrosine Sulfation Restricts the Conformational Ensemble of a Flexible Peptide, Strengthening the Binding Affinity for an Antibody. Biochemistry, 2018, 57, 4177-4185.	2.5	13
46	Non-core Region Modulates Interleukin-11 Signaling Activity. Journal of Biological Chemistry, 2011, 286, 8085-8093.	3.4	12
47	Crystal structure of the enzyme CapF of Staphylococcus aureus reveals a unique architecture composed of two functional domains. Biochemical Journal, 2012, 443, 671-680.	3.7	12
48	Intramolecular H-bonds govern the recognition of a flexible peptide by an antibody. Journal of Biochemistry, 2018, 164, 65-76.	1.7	12
49	Unexpectedly enhanced stereoselectivity of peroxidase-catalyzed sulfoxidation in branched alcohols. Biotechnology and Bioengineering, 2002, 79, 105-111.	3.3	11
50	Affinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments. Cell Reports, 2020, 32, 108037.	6.4	10
51	Solubilization of membrane proteins with novel N-acylamino acid detergents. Molecular BioSystems, 2010, 6, 677.	2.9	9
52	Structural and thermodynamic characterization of the self-adhesive properties of human P-cadherin. Molecular BioSystems, 2012, 8, 2050.	2.9	9
53	Peripheral Membrane Interactions Boost the Engagement by an Anti-HIV-1 Broadly Neutralizing Antibody. Journal of Biological Chemistry, 2017, 292, 5571-5583.	3.4	9
54	Haemolytic actinoporins interact with carbohydrates using their lipid-binding module. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160216.	4.0	9

#	Article	IF	CITATIONS
55	Asymmetric sulfoxidations mediated by ?-chymotrypsin. Biotechnology and Bioengineering, 2002, 78, 104-109.	3.3	8
56	Computer-guided library generation applied to the optimization of single-domain antibodies. Protein Engineering, Design and Selection, 2019, 32, 423-431.	2.1	8
57	New pharmacological effect of fulvestrant to prevent oxaliplatinâ€induced neurodegeneration and mechanical allodynia in rats. International Journal of Cancer, 2019, 145, 2107-2113.	5.1	8
58	Electrokinetic charge of the anesthetic-induced bR480 and bR380 spectral forms of bacteriorhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 331-337.	2.6	7
59	Structural basis for antigen recognition by methylated lysine–specific antibodies. Journal of Biological Chemistry, 2021, 296, 100176.	3.4	6
60	High-level expression of human CH2 domain from the Fc region in <i>Pichia pastoris</i> and preparation of anti-CH2 antibodies. Journal of Biochemistry, 2021, 170, 289-297.	1.7	5
61	Mechanism of dimerization and structural features of human Ll-cadherin. Journal of Biological Chemistry, 2021, 297, 101054.	3.4	4
62	Structure and role of the linker domain of the iron surface-determinant protein IsdH in heme transportation in Staphylococcus aureus. Journal of Biological Chemistry, 2022, 298, 101995.	3.4	4
63	In-Cell Enzymology To Probe His–Heme Ligation in Heme Oxygenase Catalysis. Biochemistry, 2016, 55, 4836-4849.	2.5	3
64	Abolition of aggregation of CH2 domain of human IgG1 when combining glycosylation and protein stabilization. Biochemical and Biophysical Research Communications, 2021, 558, 114-119.	2.1	3
65	Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1. Journal of Cell Science, 2021, 134, .	2.0	3
66	Reply to "The Broadly Neutralizing, Anti-HIV Antibody 4E10: an Open and Shut Case?― Journal of Virology, 2016, 90, 3276-3277.	3.4	2
67	Epitope-dependent thermodynamic signature of single-domain antibodies against hen egg lysozyme. Journal of Biochemistry, 2021, 170, 623-629.	1.7	2
68	Molecular basis for the activation of actinoporins by lipids. Methods in Enzymology, 2021, 649, 277-306.	1.0	2
69	Antibody recognition of complement Factor H reveals a flexible loop involved in Atypical Hemolytic Uremic Syndrome pathogenesis. Journal of Biological Chemistry, 2022, , 101962.	3.4	2
70	Focal accumulation of aromaticity at the CDRH3 loop mitigates 4E10 polyreactivity without altering its HIV neutralization profile. IScience, 2021, 24, 102987.	4.1	1
71	Intramolecular H-Bonds Govern the Recognition of a Flexible Peptide by an Antibody. SSRN Electronic Journal, 0, , .	0.4	1
72	Ca ²⁺ â€induced structural changes and intramolecular interactions in Nâ€terminal region of diacylglycerol kinase alpha. Protein Science, 2022, 31, .	7.6	1

#	Article	IF	CITATIONS
73	Heme-Transfer Mechanism of Structurally Similar Isd NEAT Domains of Staphylococcus Aureus Exhibiting Different Affinities for Heme. Biophysical Journal, 2014, 106, 660a.	0.5	O
74	Lipid-Protein Partnering during Pore Formation of Fragaceatoxin C. Biophysical Journal, 2016, 110, 28a.	0.5	0