Xi Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717586/publications.pdf Version: 2024-02-01

VILLANC

#	ARTICLE	IF	CITATIONS
1	Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 2022, 3, 141-155.	29.7	587
2	Reply to: Observed impacts of the COVID-19 pandemic on global trade. Nature Human Behaviour, 2021, 5, 308-309.	12.0	2
3	Embodied greenhouse gas emissions from building China's large-scale power transmission infrastructure. Nature Sustainability, 2021, 4, 739-747.	23.7	84
4	Modeling CO2 separation on amine-containing facilitated transport membranes (AFTMs) by linking effects of relative humidity, temperature, and pressure. International Journal of Greenhouse Gas Control, 2021, 108, 103327.	4.6	7
5	Adaptive CO2 emissions mitigation strategies of global oil refineries in all age groups. One Earth, 2021, 4, 1114-1126.	6.8	22
6	Exploring human health risk assessment based on the screening of primary targeted metal and chemical balance simulation of ionic speciation in an industrial area, China. Chemosphere, 2021, 277, 130353.	8.2	3
7	Opportunities and challenges for decarbonizing steel production by creating markets for †̃green steel' products. Journal of Cleaner Production, 2021, 315, 128127.	9.3	59
8	Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China. Energy Policy, 2021, 158, 112562.	8.8	34
9	Getting ready for carbon capture and storage in the iron and steel sector in China: Assessing the value of capture readiness. Journal of Cleaner Production, 2020, 244, 118953.	9.3	35
10	China's carbon capture, utilization and storage (CCUS) policy: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109601.	16.4	174
11	Sharing tableware reduces waste generation, emissions and water consumption in China's takeaway packaging waste dilemma. Nature Food, 2020, 1, 552-561.	14.0	52
12	Global supply-chain effects of COVID-19 control measures. Nature Human Behaviour, 2020, 4, 577-587.	12.0	521
13	Business Models for Carbon Capture, Utilization and Storage Technologies in the Steel Sector: A Qualitative Multi-Method Study. Processes, 2020, 8, 576.	2.8	14
14	Low-carbon development via greening global value chains: a case study of Belarus. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200024.	2.1	6
15	Simulation of Immiscible Water-Alternating-CO2 Flooding in the Liuhua Oilfield Offshore Guangdong, China. Energies, 2020, 13, 2130.	3.1	6
16	Kazakhstan's CO2 emissions in the post-Kyoto Protocol era: Production- and consumption-based analysis. Journal of Environmental Management, 2019, 249, 109393.	7.8	30
17	Screening and simulation of offshore CO2-EOR and storage: A case study for the HZ21-1 oilfield in the Pearl River Mouth Basin, Northern South China Sea. International Journal of Greenhouse Gas Control, 2019, 86, 66-81.	4.6	18
18	Structural patterns of city-level CO2 emissions in Northwest China. Journal of Cleaner Production, 2019, 223, 553-563.	9.3	24

Xi Liang

#	Article	IF	CITATIONS
19	The significance of calendar effects in the electricity market. Applied Energy, 2019, 235, 487-494.	10.1	10
20	A Preliminary Simulation of CO2-EOR and Storage in One Heavy Oil Carbonate Oilfield Offshore Guangdong, China. Environmental Science and Engineering, 2019, , 3-16.	0.2	0
21	A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong province, China. International Journal of Greenhouse Gas Control, 2018, 70, 76-87.	4.6	36
22	Geological characterization and numerical modelling of CO2 storage in an aquifer structure offshore Guangdong Province, China. Energy Procedia, 2018, 154, 48-53.	1.8	7
23	Macroeconomic impacts of global food price shocks on the economy of Turkey. Agricultural Economics (Czech Republic), 2018, 64, 517-525.	1.1	1
24	Potential evaluation of CO ₂ EOR and storage in oilfields of the Pearl River Mouth Basin, northern South China Sea. , 2018, 8, 954-977.		6
25	How would big data support societal development and environmental sustainability? Insights and practices. Journal of Cleaner Production, 2017, 142, 489-500.	9.3	158
26	Scheduling Optimization of Home Health Care Service Considering Patients' Priorities and Time Windows. Sustainability, 2017, 9, 253.	3.2	37
27	Study of a roadmap for carbon capture and storage development in Guangdong Province, China. International Journal of Sustainable Energy, 2016, 35, 858-874.	2.4	1
28	Developments in public communications on CCS. International Journal of Greenhouse Gas Control, 2015, 40, 449-458.	4.6	73
29	Zero carbon homes: Perceptions from the UK construction industry. Energy Policy, 2015, 79, 23-36.	8.8	60
30	Technical Issues in Financing and Managing Risk of Large-scale Oxyfuel CO2 Capture Power Plant in China. Energy Procedia, 2014, 63, 7234-7241.	1.8	2
31	Assessing the Option Value of Retrofitting a 200MW Power Plant to Oxyfuel CO2 Capture. Energy Procedia, 2014, 63, 7330-7336.	1.8	0
32	Addressing Technology Uncertainties in Power Plants with Post-Combustion Capture. Energy Procedia, 2013, 37, 2359-2368.	1.8	8
33	The Evolution of Stakeholder Perceptions of Deploying CCS Technologies in China: Survey Results from Three Stakeholder Consultations in 2006, 2009 and 2012. Energy Procedia, 2013, 37, 7361-7368.	1.8	4
34	The GDCCSR Project Promoting Regional CCS-Readiness in the Guangdong Province, South China. Energy Procedia, 2013, 37, 7622-7632.	1.8	16
35	Technological, economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy, 2013, 61, 1377-1387.	8.8	74
36	Resolving the Tension between CCS Deployment and Chinese Energy Security. Environmental Science & Technology, 2013, 47, 4963-4964.	10.0	3

Xi Liang

#	Article	IF	CITATIONS
37	Stakeholder Views on Financing Carbon Capture and Storage Demonstration Projects in China. Environmental Science & Technology, 2012, 46, 643-651.	10.0	17
38	Early Opportunity for CO2 Capture from Gasification Plants in China. Energy Procedia, 2012, 14, 1451-1457.	1.8	3
39	Assessing the value of retrofitting cement plants for carbon capture: A case study of a cement plant in Guangdong, China. Energy Conversion and Management, 2012, 64, 454-465.	9.2	31
40	Opportunities and barriers for implementing CO2 capture ready designs: A case study of stakeholder perceptions in Guangdong, China. Energy Policy, 2012, 45, 243-251.	8.8	17
41	CO2 capture modelling for pulverised coal-fired power plants: A case study of an existing 1GW ultra-supercritical power plant in Shandong, China. Separation and Purification Technology, 2012, 94, 138-145.	7.9	13
42	Getting ready for carbon capture and storage through a â€~CCS (Carbon Capture and Storage) Ready Hub': A case study of Shenzhen city in Guangdong province, China. Energy, 2011, 36, 5916-5924.	8.8	36
43	An assessment of the potential for retrofitting existing coal-fired power plants in China. Energy Procedia, 2011, 4, 1805-1811.	1.8	6
44	Techno-economic assessment of CO2 capture retrofit to existing power plants. Energy Procedia, 2011, 4, 1835-1842.	1.8	13
45	Techno-economic assessment of future-proofing coal plants with postcombustion capture against technology developments. Energy Procedia, 2011, 4, 1909-1916.	1.8	9
46	Financing new power plants â€~CCS Ready' in China–A case study of Shenzhen city. Energy Procedia, 2011 4, 2572-2579.	' 1.8	4
47	Locating new coal-fired power plants with Carbon Capture Ready design–A GIS case study of Guangdong province in China. Energy Procedia, 2011, 4, 2824-2830.	1.8	3
48	Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS. Energy Policy, 2011, 39, 3106-3116.	8.8	39
49	Perceptions of opinion leaders towards CCS demonstration projects in China. Applied Energy, 2011, 88, 1873-1885.	10.1	61
50	Getting Ready for Carbon Capture and Storage by Issuing Capture Options. Environment and Planning A, 2010, 42, 1286-1307.	3.6	11
51	Assessing the value of CO2 capture ready in new-build pulverised coal-fired power plants in China. International Journal of Greenhouse Gas Control, 2009, 3, 787-792.	4.6	36
52	Assessing the value of CO2 capture ready in new-build coal-fired power plants in China. Energy Procedia, 2009, 1, 4363-4370.	1.8	5
53	Behavioral issues in financing low carbon power plants. Energy Procedia, 2009, 1, 4495-4502.	1.8	11
54	Opportunities and hurdles in applying CCS Technologies in China — With a focus on industrial stakeholders. Energy Procedia, 2009, 1, 4827-4834.	1.8	14