Antonio Camacho Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717314/publications.pdf

Version: 2024-02-01

55 papers

2,100 citations

430874 18 h-index 395702 33 g-index

55 all docs 55 docs citations

55 times ranked 1555 citing authors

#	Article	IF	CITATIONS
1	Flexible Voltage Support Control for Three-Phase Distributed Generation Inverters Under Grid Fault. IEEE Transactions on Industrial Electronics, 2013, 60, 1429-1441.	7.9	280
2	Active and Reactive Power Strategies With Peak Current Limitation for Distributed Generation Inverters During Unbalanced Grid Faults. IEEE Transactions on Industrial Electronics, 2015, 62, 1515-1525.	7.9	240
3	Control Scheme for Photovoltaic Three-Phase Inverters to Minimize Peak Currents During Unbalanced Grid-Voltage Sags. IEEE Transactions on Power Electronics, 2012, 27, 4262-4271.	7.9	210
4	Reactive Power Control for Distributed Generation Power Plants to Comply With Voltage Limits During Grid Faults. IEEE Transactions on Power Electronics, 2014, 29, 6224-6234.	7.9	164
5	Reduction of Current Harmonic Distortion in Three-Phase Grid-Connected Photovoltaic Inverters via Resonant Current Control. IEEE Transactions on Industrial Electronics, 2013, 60, 1464-1472.	7.9	155
6	Control Scheme With Voltage Support Capability for Distributed Generation Inverters Under Voltage Sags. IEEE Transactions on Power Electronics, 2013, 28, 5252-5262.	7.9	140
7	Voltage Support Control Strategies for Static Synchronous Compensators Under Unbalanced Voltage Sags. IEEE Transactions on Industrial Electronics, 2014, 61, 808-820.	7.9	120
8	Positive and Negative Sequence Control Strategies to Maximize the Voltage Support in Resistive–Inductive Grids During Grid Faults. IEEE Transactions on Power Electronics, 2018, 33, 5362-5373.	7.9	108
9	Receding-Horizon Model-Predictive Control for a Three-Phase VSI With an <i>LCL</i> Filter. IEEE Transactions on Industrial Electronics, 2019, 66, 6671-6680.	7.9	73
10	Optimal Online Sampling Period Assignment: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2011, 19, 902-910.	5.2	54
11	Control Strategy for Distribution Generation Inverters to Maximize the Voltage Support in the Lowest Phase During Voltage Sags. IEEE Transactions on Industrial Electronics, 2018, 65, 2346-2355.	7.9	50
12	Modeling and Design of Voltage Support Control Schemes for Three-Phase Inverters Operating Under Unbalanced Grid Conditions. IEEE Transactions on Power Electronics, 2014, 29, 6139-6150.	7.9	45
13	Active Power Sharing and Frequency Regulation in Droop-Free Control for Islanded Microgrids Under Electrical and Communication Failures. IEEE Transactions on Industrial Electronics, 2020, 67, 6461-6472.	7.9	45
14	Runtime Allocation of Optional Control Jobs to a Set of CAN-Based Networked Control Systems. IEEE Transactions on Industrial Informatics, 2010, 6, 503-520.	11.3	41
15	Self-triggered networked control systems: An experimental case study. , 2010, , .		29
16	Impact of Clock Drifts on Communication-Free Secondary Control Schemes for Inverter-Based Islanded Microgrids. IEEE Transactions on Industrial Electronics, 2018, 65, 4739-4749.	7.9	29
17	Design of an Embedded Control System Laboratory Experiment. IEEE Transactions on Industrial Electronics, 2010, 57, 3297-3307.	7.9	27
18	Reactive current injection protocol for lowâ€power rating distributed generation sources under voltage sags. IET Power Electronics, 2015, 8, 879-886.	2.1	25

#	Article	IF	CITATIONS
19	Local Secondary Control for Inverter-Based Islanded Microgrids With Accurate Active Power Sharing Under High-Load Conditions. IEEE Transactions on Industrial Electronics, 2019, 66, 2529-2539.	7.9	19
20	A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters. Energies, 2017, 10, 1589.	3.1	18
21	Plâ€based controller for lowâ€power distributed inverters to maximise reactive current injection while avoiding over voltage during voltage sags. IET Power Electronics, 2019, 12, 83-91.	2.1	16
22	Positive-Sequence Voltage Control, Full Negative-Sequence Cancellation, and Current Limitation for Static Compensators. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 6613-6623.	5.4	16
23	Active damping control for a three phase grid-connected inverter using sliding mode control. , 2013, , .		15
24	Imbalance-Voltage Mitigation in an Inverter-Based Distributed Generation System Using a Minimum Current-Based Control Strategy. IEEE Transactions on Power Delivery, 2020, 35, 1399-1409.	4.3	15
25	Droopâ€free hierarchical control strategy for inverterâ€based AC microgrids. IET Power Electronics, 2020, 13, 1403-1415.	2.1	14
26	Maximizing positive sequence voltage support in inductive-resistive grids for distributed generation inverters during voltage sags., 2016,,.		13
27	Fast grid synchronization technique based on a multiple cascaded general integrator scheme for distributed generation inverters. , 2012, , .		12
28	Analysis of Consensus-Based Islanded Microgrids Subject to Unexpected Electrical and Communication Partitions. IEEE Transactions on Smart Grid, 2019, 10, 5125-5135.	9.0	12
29	Collaborative Voltage Unbalance Elimination in Grid-Connected AC Microgrids With Grid-Feeding Inverters. IEEE Transactions on Power Electronics, 2021, 36, 7189-7201.	7.9	12
30	Finite Control Set Model Predictive Control for a Three-Phase Shunt Active Power Filter with a Kalman Filter-Based Estimation. Energies, 2017, 10, 1553.	3.1	11
31	Coordinated reactive power control for static synchronous compensators under unbalanced voltage sags. , 2012, , .		9
32	Reactive power control for voltage support during type C voltage-sags. , 2012, , .		8
33	Synchronization of local integral controllers for frequency restoration in islanded microgrids. , 2016, , .		8
34	Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids. Energies, 2017, 10, 2096.	3.1	7
35	Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters. Energies, 2018, 11, 1949.	3.1	6
36	Avoiding overvoltage problems in threeâ€phase distributedâ€generation systems during unbalanced voltage sags. IET Power Electronics, 2020, 13, 1537-1545.	2.1	6

#	Article	IF	Citations
37	Decoupled sliding mode control for three-phase LCL VSI operating at fixed switching frequency. , 2012, , .		5
38	Voltage sag mitigation in a PV-based industrial microgrid during grid faults. , 2017, , .		5
39	Consensus for active power sharing and frequency restoration in islanded microgrids subject to drifting clocks. , 2017 , , .		5
40	Enabling Grid-Feeding Converters With a Dissonant-Resonant Controller for Negative-Sequence Voltage Elimination. IEEE Transactions on Power Electronics, 2020, 35, 4342-4352.	7.9	5
41	Synchronizing sampling and actuation in the absence of global time in Networked Control Systems. , 2010, , .		4
42	Networked sliding mode control of the double integrator system using the event-driven self-triggered approach. , 2011, , .		4
43	Control strategies based On effective power factor for Distributed Generation power plants during unbalanced grid voltage. , 2013, , .		4
44	Distributed reactive power control methods to avoid voltage rise in grid-connected photovoltaic power generation systems. , 2013 , , .		3
45	Power sharing control in islanded microgrid using event driven communication. , 2013, , .		3
46	Complex Power Sharing Is Not Complex. IEEE Transactions on Smart Grid, 2022, 13, 1762-1773.	9.0	3
47	Communication-aware consensus for frequency restoration in islanded MicroGrids. , 2016, , .		2
48	On the use of communication infrastructure in distributed power generation: A preliminary case study. , 2012 , , .		1
49	Internet-based control of a ball-and-plate system: A case study of modeling and automatic code generation for networked control systems. , 2014, , .		1
50	Design and control of a small-scale industrial microgrid in islanding mode. , 2016, , .		1
51	Microgrid Architecture Evaluation for Small and Medium Size Industries. International Journal of Emerging Electric Power Systems, 2018, 19, .	0.8	1
52	A distributed control for accurate activeâ€power sharing in islanded microgrids subject to clock drifts. IET Power Electronics, 2021, 14, 518-530.	2.1	1
53	Efficient Utilization of Bus Idle Times in CAN-based Networked Control Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 121-126.	0.4	O
54	Mixing local and distributed reactive power control for balancing inverters' effort in grid-connected photovoltaic systems. , 2013, , .		0

ARTICLE IF CITATIONS

55 Local hierarchical control for industrial microgrids with improved frequency regulation., 2018,,. o