Renee T Ormsby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717282/publications.pdf

Version: 2024-02-01

		1125743	
14	979	11	13
papers	citations	h-index	g-index
16	16	16	1568
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. Journal of Bone and Mineral Research, 2011, 26, 1425-1436.	2.8	209
2	Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Molecular and Cellular Endocrinology, 2015, 399, 208-218.	3.2	148
3	Sclerostin Regulates Release of Bone Mineral by Osteocytes by Induction of Carbonic Anhydrase 2. Journal of Bone and Mineral Research, 2013, 28, 2436-2448.	2.8	130
4	Osteoclastic Metabolism of 25(OH)-Vitamin D3: A Potential Mechanism for Optimization of Bone Resorption. Endocrinology, 2010, 151, 4613-4625.	2.8	127
5	SaOS2 Osteosarcoma Cells as an In Vitro Model for Studying the Transition of Human Osteoblasts to Osteocytes. Calcified Tissue International, 2014, 95, 183-193.	3.1	97
6	3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink with High Shape Integrity. ACS Applied Bio Materials, 2020, 3, 1815-1826.	4.6	83
7	Evidence that osteocyte perilacunar remodelling contributes to polyethylene wear particle induced osteolysis. Acta Biomaterialia, 2016, 33, 242-251.	8.3	57
8	Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomaterialia, 2019, 87, 296-306.	8.3	41
9	Calcium induces pro-anabolic effects on human primary osteoblasts associated with acquisition of mature osteocyte markers. Molecular and Cellular Endocrinology, 2013, 376, 85-92.	3.2	27
10	Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcified Tissue International, 2021, 109, 66-76.	3.1	25
11	Analysis of vitamin D metabolism gene expression in human bone: Evidence for autocrine control of bone remodelling. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 110-113.	2.5	23
12	Nanoengineered drug-releasing aluminium wire implants: comparative investigation of nanopore geometry, drug release and osteoblast cell adhesion. RSC Advances, 2015, 5, 75004-75014.	3.6	6
13	Evidence for Gender-Specific Bone Loss Mechanisms in Periprosthetic Osteolysis. Journal of Clinical Medicine, 2020, 9, 53.	2.4	5
14	Monocytes, Macrophages and Joint Inflammation in Osteoarthritis., 2022,, 147-169.		1