## Brundabana Naik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271703/publications.pdf

Version: 2024-02-01

32 papers

1,704 citations

331670 21 h-index 434195 31 g-index

36 all docs 36 docs citations

36 times ranked 2090 citing authors

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IF  | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO <sub>2</sub> and Direct Solar-Light-Driven Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 19473-19482.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1 | 166       |
| 2  | Synergistic Effects of Boron and Sulfur Co-doping into Graphitic Carbon Nitride Framework for Enhanced Photocatalytic Activity in Visible Light Driven Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 5936-5947.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1 | 162       |
| 3  | Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. Journal of Colloid and Interface Science, 2008, 318, 231-237.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.4 | 124       |
| 4  | Coupling of Crumpled-Type Novel MoS <sub>2</sub> with CeO <sub>2</sub> Nanoparticles: A<br>Noble-Metal-Free p–n Heterojunction Composite for Visible Light Photocatalytic H <sub>2</sub> Production. ACS Omega, 2017, 2, 3745-3753.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5 | 121       |
| 5  | Synthesis of mesoporous TiO2â^'xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. Journal of Colloid and Interface Science, 2009, 333, 269-276.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.4 | 102       |
| 6  | Cr(VI) remediation from aqueous environment through modified-TiO <sub>2</sub> -mediated photocatalytic reduction. Beilstein Journal of Nanotechnology, 2018, 9, 1448-1470.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8 | 102       |
| 7  | Plasmon Induced Nano Au Particle Decorated over S,N-Modified TiO <sub>2</sub> for Exceptional Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Samp; Interfaces, 2014, 6, 839-846.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0 | 99        |
| 8  | Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2011, 36, 2794-2802.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1 | 92        |
| 9  | Serendipitous Assembly of Mixed Phase BiVO <sub>4</sub> on B-Doped g-C <sub>3</sub> N <sub>4</sub> :<br>An Appropriate p–n Heterojunction for Photocatalytic O <sub>2</sub> evolution and Cr(VI) reduction.<br>Inorganic Chemistry, 2019, 58, 12480-12491.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0 | 85        |
| 10 | Enhanced H <sub>2</sub> Generation of Au‣oaded, Nitrogenâ€Doped TiO <sub>2</sub> Hierarchical Nanostructures under Visible Light. Advanced Materials Interfaces, 2014, 1, 1300018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7 | 67        |
| 11 | Green synthesis of fibrous hierarchical meso-macroporous N doped TiO2 nanophotocatalyst with enhanced photocatalytic H2 production. International Journal of Hydrogen Energy, 2013, 38, 3545-3553.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1 | 52        |
| 12 | Hot Electron and Surface Plasmon-Driven Catalytic Reaction in Metal–Semiconductor Nanostructures. Catalysis Letters, 2014, 144, 1996-2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6 | 49        |
| 13 | Surface-Plasmon-Resonance-Induced Photocatalysis by Core–Shell SiO <sub>2</sub> @Ag<br>NCs@Ag <sub>3</sub> PO <sub>4</sub> toward Water-Splitting and Phenol Oxidation Reactions.<br>Inorganic Chemistry, 2019, 58, 9643-9654.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0 | 48        |
| 14 | Facile fabrication of mesoporosity driven N–TiO2@CS nanocomposites with enhanced visible light photocatalytic activity. RSC Advances, 2013, 3, 4976.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6 | 46        |
| 15 | Solar Light Active Photodegradation of Phenol over a Fe <sub><i>x</i></sub> Ti <sub>1â^'<i>x</i></sub> O <sub>2â^'<i>y</i></sub> N <sub><i>y</i></sub> O <sub>2â^'<i>y</i></sub> N <sub><i>y</i></sub> O <sub>2â^'<i>y</i></sub> N <sub><i>y</i></sub> O <sub>2â^'<i>y</i></sub> N <sub><i>y</i></sub> O <sub><i>y</i></sub> N <sub><i>y</i></sub> O <sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<sub>O<s< td=""><td>3.7</td><td>45</td></s<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub> | 3.7 | 45        |
| 16 | Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Applied Surface Science, 2015, 354, 347-352.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1 | 44        |
| 17 | Cu–Ag Bimetal Alloy Decorated SiO <sub>2</sub> @TiO <sub>2</sub> Hybrid Photocatalyst for Enhanced H <sub>2</sub> Evolution and Phenol Oxidation under Visible Light. Inorganic Chemistry, 2020, 59, 10824-10834.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0 | 44        |
| 18 | Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. Journal of Environmental Chemical Engineering, 2019, 7, 102821.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.7 | 38        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Catalytic activity of Pt/SiO2 nanocatalysts synthesized via ultrasonic spray pyrolysis process under CO oxidation. Applied Catalysis B: Environmental, 2014, 154-155, 171-176.                                                    | 20.2 | 34        |
| 20 | Facile Synthesis of Bi <sub>2</sub> O <sub>3</sub> /TiO <sub>2â^'<i>x</i></sub> N <sub><i>x</i></sub> and its Direct Solarâ€Lightâ€Driven Photocatalytic Selective Hydroxylation of Phenol. ChemCatChem, 2011, 3, 311-318.        | 3.7  | 28        |
| 21 | Tailoring metal–oxide interfaces of oxide-encapsulated Pt/silica hybrid nanocatalysts with enhanced thermal stability. Catalysis Today, 2016, 265, 245-253.                                                                       | 4.4  | 28        |
| 22 | Phase transition, electronic transitions and visible light driven enhanced photocatalytic activity of Eu–Ni co-doped bismuth ferrite nanoparticles. Journal of Physics and Chemistry of Solids, 2021, 153, 110018.                | 4.0  | 17        |
| 23 | Photocatalytic activity of metal-decorated SiO2@TiO2 hybrid photocatalysts under water splitting. Korean Journal of Chemical Engineering, 2016, 33, 2325-2329.                                                                    | 2.7  | 16        |
| 24 | Organic-inorganic hybrid hydroquinone bridged V-CdS/HAP/Pd-TCPP: A novel visible light active photocatalyst for phenol degradation. Journal of Molecular Liquids, 2021, 339, 116721.                                              | 4.9  | 15        |
| 25 | Photocatalytic H <sub>2</sub> generation on macro-mesoporous oxide-supported Pt nanoparticles. RSC Advances, 2016, 6, 18198-18203.                                                                                                | 3.6  | 14        |
| 26 | Enhanced photocatalytic activity of nanoporous BiVO 4 /MCM-41 co-joined nanocomposites for solar energy conversion and environmental pollution abatement. Journal of Environmental Chemical Engineering, 2017, 5, 4524-4530.      | 6.7  | 10        |
| 27 | Trioctylphosphine Oxide (TOPO)-Assisted Facile Fabrication of Phosphorus-Incorporated Nanostructured Carbon Nitride Toward Photoelectrochemical Water Splitting with Enhanced Activity. Inorganic Chemistry, 2022, 61, 1368-1376. | 4.0  | 10        |
| 28 | Pd supported on 3D graphene aerogel as potential electrocatalyst for alkaline direct methanol fuel cells. Materials Today: Proceedings, 2021, 41, 150-155.                                                                        | 1.8  | 4         |
| 29 | Role of graphene nanocomposite photocatalysts in photo-reduction of Cr (VI) for wastewater treatment. Materials Today: Proceedings, 2021, 41, 324-328.                                                                            | 1.8  | 4         |
| 30 | Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts. Catalysis Letters, 2015, 145, 930-938.                                                                                                  | 2.6  | 3         |
| 31 | Dielectric behaviour of EVA/EPDM/HNT ternary nanocomposites. Materials Today: Proceedings, 2021, 41, 211-215.                                                                                                                     | 1.8  | 2         |
| 32 | Artificial photosynthesis using ultrathin 2D materials. Materials Today: Proceedings, 2022, , .                                                                                                                                   | 1.8  | 0         |