Pi-Guey Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2716948/publications.pdf Version: 2024-02-01

DI-CLIEV SIL

#	Article	IF	CITATIONS
1	One-pot synthesis of plate-like CeO2 nanosheets for sensing NH3 gas at room temperature. Materials Chemistry and Physics, 2022, 277, 125453.	4.0	6
2	A room temperature NH ₃ gas sensor based on a quartz crystal microbalance coated with a rGO–SnO ₂ composite film. Analytical Methods, 2022, 14, 1454-1461.	2.7	5
3	Room-temperature ppb-level SO ₂ gas sensors based on RGO/WO ₃ and MWCNTs/WO ₃ nanocomposites. Analytical Methods, 2021, 13, 782-788.	2.7	23
4	Recognition of binary mixture of NO2 and NO gases using a chemiresistive sensors array combined with principal component analysis. Sensors and Actuators A: Physical, 2021, 331, 112980.	4.1	22
5	Electrical and Humidity-Sensing Properties of EuCl2, Eu2O3 and EuCl2/Eu2O3 Blend Films. Chemosensors, 2021, 9, 288.	3.6	1
6	Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sensors and Actuators A: Physical, 2020, 303, 111718.	4.1	39
7	Preparation and NH3 Gas-Sensing Properties of Double-Shelled Hollow ZnTiO3 Microrods. Sensors, 2020, 20, 46.	3.8	6
8	Electrical and Humidity-Sensing Properties of Impedance-Type Humidity Sensors that Were Made of Ag Microwires/PPy/SnO2 Ternary Composites. Chemosensors, 2020, 8, 92.	3.6	10
9	Fabrication of a highly sensitive flexible humidity sensor based on Pt/polythiophene/reduced graphene oxide ternary nanocomposite films using a simple one-pot method. Sensors and Actuators B: Chemical, 2020, 324, 128728.	7.8	37
10	H ₂ -gas sensing and discriminating actions of a single-yarn sensor based on a Pd/GO multilayered thin film using FFT. Analytical Methods, 2020, 12, 3537-3544.	2.7	8
11	Detection of ppb-level NO ₂ gas using a portable gas-sensing system with a Fe ₂ O ₃ /MWCNTs/WO ₃ sensor using a pulsed-UV-LED. Analytical Methods, 2019, 11, 973-979.	2.7	17
12	Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Materials Science and Engineering C, 2019, 94, 150-160.	7.3	13
13	Fabrication of a flexible single-yarn NH3 gas sensor by layer-by-layer self-assembly of graphene oxide. Materials Chemistry and Physics, 2019, 224, 349-356.	4.0	24
14	Fabrication and electrical and humidity-sensing properties of a flexible and stretchable textile humidity sensor. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 36-43.	5.3	30
15	Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sensors and Actuators B: Chemical, 2018, 254, 1125-1132.	7.8	49
16	One-pot synthesis of AuNPs/RGO/WO 3 nanocomposite for simultaneously sensing hydroquinone and catechol. Materials Chemistry and Physics, 2018, 215, 293-298.	4.0	18
17	Electrical and humidity-sensing properties of flexible metal-organic framework M050(Mg) and KOH/M050 and AuNPs/M050 composites films. Sensors and Actuators B: Chemical, 2018, 269, 110-117.	7.8	15
18	Effect of adding Au nanoparticles and KOH on the electrical and humidity-sensing properties of WO3 particles. Sensors and Actuators B: Chemical, 2017, 252, 854-861.	7.8	11

#	Article	IF	CITATIONS
19	Simple and rapid differentiation of toxic gases using a quartz crystal microbalance sensor array coupled with principal component analysis. Sensors and Actuators A: Physical, 2017, 263, 1-7.	4.1	23
20	Effect of processing parameters on the deposition of SiOx-like coatings on the surface of polypropylene films using glow discharge plasma assisted polymerization for tissue engineering applications. Vacuum, 2017, 143, 412-422.	3.5	9
21	Electrical and humidity-sensing properties of 1-(4-carboxylic acid phenyl)-2,5-dimethyl-1H-pyrrole doped with both KOH and K2CO3 salts. Sensors and Actuators B: Chemical, 2017, 240, 595-603.	7.8	3
22	Cold atmospheric pressure (CAP) plasma assisted tailoring of LDPE film surfaces for enhancement of adhesive and cytocompatible properties: Influence of operating parameters. Vacuum, 2016, 130, 34-47.	3.5	7
23	Effect of cold atmospheric pressure plasma gas composition on the surface and cyto-compatible properties of low density polyethylene (LDPE) films. Current Applied Physics, 2016, 16, 784-792.	2.4	17
24	Fabrication of a flexible H 2 sensor based on Pd nanoparticles modified polypyrrole films. Materials Chemistry and Physics, 2016, 170, 180-185.	4.0	15
25	Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity. Applied Surface Science, 2016, 370, 545-556.	6.1	18
26	Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance. Sensors and Actuators A: Physical, 2016, 238, 344-350.	4.1	11
27	Flexibility and electrical and humidity-sensing properties of N-substituted pyrrole derivatives and composite films of Au nanoparticles/N-substituted pyrrole derivatives. Sensors and Actuators B: Chemical, 2016, 224, 833-840.	7.8	8
28	NH 3 gas sensor based on Pd/SnO 2 /RGO ternary composite operated at room-temperature. Sensors and Actuators B: Chemical, 2016, 223, 202-208.	7.8	163
29	Modification of Gold Electrodes Using AuNPs/ <i>β</i> -Cyclodextrin/Reduced Graphene Oxide Nanocomposites to Detect Simultaneously Hydroquinone and Catechol. Sensor Letters, 2016, 14, 635-641.	0.4	1
30	Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sensors and Actuators B: Chemical, 2015, 211, 157-163.	7.8	65
31	Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol–gel film. Sensors and Actuators B: Chemical, 2015, 216, 467-475.	7.8	57
32	Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties. Applied Surface Science, 2015, 347, 336-346.	6.1	30
33	Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications. Applied Surface Science, 2015, 328, 1-12.	6.1	41
34	Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta, 2015, 132, 398-405.	5.5	136
35	Fabrication of Sno2/Reduced Graphene Oxide Nanocomposite Films for Sensing No2 Gas at Room-Temperature. International Journal of Scientific Engineering and Technology, 2015, 4, 268-272.	0.2	1
36	Layer-by-Layer Covalent Immobilization of Acetylcholinesterase and Polyamidoamine Dendrimer on a Gold Electrode for Detecting Organophosphorus Pesticides. Sensor Letters, 2015, 13, 584-591.	0.4	0

#	Article	IF	CITATIONS
37	Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sensors and Actuators B: Chemical, 2014, 190, 865-872.	7.8	91
38	Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sensors and Actuators B: Chemical, 2014, 193, 637-643.	7.8	138
39	Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO2/PET film for biomedical application. Materials Science and Engineering C, 2014, 36, 309-319.	7.3	32
40	Detection of Cu(II) ion by an electrochemical sensor made of 5,17-bis(4′-nitrophenylazo)-25,26,27,28-tetrahydroxycalix[4]arene-electromodified electrode. Sensors and Actuators B: Chemical, 2014, 191, 364-370.	7.8	25
41	Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE). Applied Surface Science, 2014, 307, 109-119.	6.1	38
42	Low-humidity sensing properties of carboxylic acid functionalized carbon nanomaterials measured by a quartz crystal microbalance. Sensors and Actuators A: Physical, 2014, 205, 126-132.	4.1	19
43	Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate. Sensors and Actuators B: Chemical, 2014, 200, 9-18.	7.8	94
44	Layer-by-layer anchoring of copolymer of methyl methacrylate and [3-(methacrylamino)propyl] trimethyl ammonium chloride to gold surface on flexible substrate for sensing humidity. Sensors and Actuators B: Chemical, 2013, 178, 289-295.	7.8	15
45	Humidity sensing properties of calix[4]arene and functionalized calix[4]arene measured using a quartz-crystal microbalance. Sensors and Actuators B: Chemical, 2013, 181, 795-801.	7.8	19
46	Detection of Bisphenol A Using Layer-by-Layer Covalent Anchoring of Polyamidoamine Dendrimer to Gold Electrodes. Sensor Letters, 2013, 11, 1894-1902.	0.4	0
47	Fabrication, characterization and sensing properties of Cu(II) ion imprinted sol–gel thin film on QCM. Materials Chemistry and Physics, 2012, 135, 130-136.	4.0	11
48	Low-humidity sensing properties of PAMAM dendrimer and PAMAM–Au nanoparticles measured by a quartz-crystal microbalance. Sensors and Actuators A: Physical, 2012, 179, 44-49.	4.1	14
49	Electrical and humidity sensing properties of K+-nano-mica film. Sensors and Actuators B: Chemical, 2012, 161, 838-844.	7.8	12
50	Electrical and sensing properties of a flexible humidity sensor made of polyamidoamine dendrimer-Au nanoparticles. Sensors and Actuators B: Chemical, 2012, 165, 151-156.	7.8	35
51	25-Alkoxy-26-benzoyloxycalix[4]arenes: the reaction mechanism of benzoyl migration. Tetrahedron Letters, 2012, 53, 3510-3513.	1.4	1
52	Fabrication of a room-temperature NO2 gas sensor based on WO3 films and WO3/MWCNT nanocomposite films by combining polyol process with metal organic decomposition method. Materials Chemistry and Physics, 2011, 125, 351-357.	4.0	55
53	Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly(2-acrylamido-2-methylpropane sulfonate) and its salt complex. Sensors and Actuators B: Chemical, 2011, 153, 29-36.	7.8	51
54	Flexible H2 sensor fabricated by layer-by-layer self-assembly of thin films of polypyrrole and modified in situ with Pt nanoparticles. Sensors and Actuators B: Chemical, 2011, 157, 275-281.	7.8	38

#	Article	IF	CITATIONS
55	Flexible H2 sensors fabricated by layer-by-layer self-assembly thin film of multi-walled carbon nanotubes and modified in situ with Pd nanoparticles. Sensors and Actuators B: Chemical, 2010, 145, 521-526.	7.8	40
56	The Effect of the Type of Polycation Used in Mica Nanocomposite Thin Films Prepared by Layer-by-Layer Technique on Low-Humidity Sensing. Sensor Letters, 2010, 8, 848-856.	0.4	2
57	Novel fully transparent and flexible humidity sensor. Sensors and Actuators B: Chemical, 2009, 137, 496-500.	7.8	47
58	Layer-by-layer assembly of mica and polyelectrolyte for use in low-humidity sensor. Sensors and Actuators B: Chemical, 2009, 137, 555-560.	7.8	10
59	Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties. Sensors and Actuators B: Chemical, 2009, 139, 488-493.	7.8	85
60	Self-assembly of polyelectrolytic multilayer thin films of polyelectrolytes on quartz crystal microbalance for detecting low humidity. Sensors and Actuators B: Chemical, 2009, 142, 123-129.	7.8	20
61	Low-humidity sensing properties of carbon nanotubes measured by a quartz crystal microbalance. Sensors and Actuators B: Chemical, 2009, 135, 506-511.	7.8	31
62	Flexible NH3 sensors fabricated by in situ self-assembly of polypyrrole. Talanta, 2009, 80, 763-769.	5.5	64
63	Humidity sensing and electrical properties of Na- and K-montmorillonite. Sensors and Actuators B: Chemical, 2008, 129, 380-385.	7.8	22
64	Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials. Sensors and Actuators B: Chemical, 2008, 129, 538-543.	7.8	119
65	Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films. Sensors and Actuators B: Chemical, 2008, 129, 915-920.	7.8	74
66	In situ prepared polypyrrole for low humidity QCM sensor and related theoretical calculation. Talanta, 2007, 73, 857-861.	5.5	32
67	Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and Actuators B: Chemical, 2007, 123, 501-507.	7.8	198
68	Novel flexible resistive-type humidity sensor. Sensors and Actuators B: Chemical, 2007, 123, 1071-1076.	7.8	101
69	In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sensors and Actuators B: Chemical, 2007, 124, 303-308.	7.8	59
70	Poly(l-lactide) stabilized gold nanoparticles based QCM sensor for low humidity detection. Sensors and Actuators B: Chemical, 2007, 126, 441-446.	7.8	20
71	Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance. Talanta, 2006, 69, 946-951.	5.5	34
72	Humidity sensor based on PMMA simultaneously doped with two different salts. Sensors and Actuators B: Chemical, 2006, 113, 883-886.	7.8	69

#	Article	IF	CITATIONS
73	A micromachined resistive-type humidity sensor with a composite material as sensitive film. Sensors and Actuators B: Chemical, 2006, 113, 837-842.	7.8	33
74	A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sensors and Actuators B: Chemical, 2006, 115, 338-343.	7.8	84
75	Humidity sensing and electrical properties of hybrid films prepared from [3-(methacrylamino)propyl] trimethyl ammonium chloride, aqueous monodispersed colloidal silica and methyl methacrylate. Sensors and Actuators B: Chemical, 2006, 119, 483-489.	7.8	9
76	Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material. Sensors and Actuators B: Chemical, 2006, 113, 142-149.	7.8	44
77	The application of CNT/Nafion composite material to low humidity sensing measurement. Sensors and Actuators B: Chemical, 2005, 104, 80-84.	7.8	179
78	In situ copolymerization of copolymer of methyl methacrylate and [3-(methacrylamino)propyl] trimethyl ammonium chloride on an alumina substrate for humidity sensing. Sensors and Actuators B: Chemical, 2005, 107, 317-322.	7.8	39
79	A resistive-type humidity sensor using composite films prepared from poly(2-acrylamido-2-methylpropane sulfonate) and dispersed organic silicon sol. Talanta, 2005, 66, 1247-1253.	5.5	40
80	Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride. Sensors and Actuators B: Chemical, 2005, 105, 170-175.	7.8	3
81	Laminating two-layer thick films structure tin oxide-based butane gas sensor operating at low temperature. Sensors and Actuators B: Chemical, 2004, 99, 304-309.	7.8	21
82	Humidity sensing and electrical properties of a composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate). Sensors and Actuators B: Chemical, 2004, 100, 417-422.	7.8	50
83	A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B: Chemical, 2004, 101, 81-89.	7.8	358
84	Uncertainty of humidity sensors testing by means of divided-flow generator. Measurement: Journal of the International Measurement Confederation, 2004, 36, 21-27.	5.0	25
85	Nanogold on powdered cobalt oxide for carbon monoxide sensor. Sensors and Actuators B: Chemical, 2003, 96, 596-601.	7.8	49
86	Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity. Analytica Chimica Acta, 2001, 449, 103-109.	5.4	65
87	Determination of organophosphorus pesticides in water by solid-phase microextraction. Talanta, 1999, 49, 393-402.	5.5	47
88	Use of 4-(2-pyridylazo)resocinol or 2-(2-pyridylazo)-5-dimethylaminophenol as chelating agent for determination of cadmium in seawater by atomic absorption spectrometry with on-line flow-injection sorbent extraction. Analytica Chimica Acta, 1998, 376, 305-311.	5.4	25
89	Direct and simultaneous determination of copper and manganese in seawater with a multielement graphite furnace atomic absorption spectrometer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 699-708.	2.9	22
90	Direct and simultaneous determination of molybdenum and vanadium in sea-water using a multielement electrothermal atomic absorption spectrometer. Journal of Analytical Atomic Spectrometry, 1998, 13, 641-645.	3.0	28

#	Article	IF	CITATIONS
91	Investigation on Surface and Biological Properties of Silver Containing Diamond Like Carbon Films on Polyethylene Terephthalate Film Surface by Hybrid Reactive Sputtering Method. Key Engineering Materials, 0, 521, 191-205.	0.4	2