
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2716901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta, 2006, 224, 1291-1301.	1.6	106
2	Antiproliferative and cytostatic effects of the natural product eupatorin on MDA-MB-468 human breast cancer cells due to CYP1-mediated metabolism. Breast Cancer Research, 2008, 10, R39.	2.2	102
3	Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fìtoterapìâ, 2015, 107, 128-134.	1.1	86
4	CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicology, 2009, 264, 162-170.	2.0	82
5	Flavonoids and Their Metabolites: Prevention in Cardiovascular Diseases and Diabetes. Diseases (Basel,) Tj ETQq1	1_0_78431 1.0	l4rgBT /Ov
6	Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Letters, 2009, 274, 54-60.	3.2	69
7	Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation. Oncology Reports, 2009, 21, 1525-8.	1.2	66
8	Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta, 2002, 215, 1031-1039.	1.6	65
9	Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Annals of Botany, 2009, 104, 315-323.	1.4	62
10	Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Molecular Biotechnology, 2018, 60, 169-183.	1.3	59
11	Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochemistry Reviews, 2014, 13, 893-913.	3.1	57
12	Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells. Food and Chemical Toxicology, 2012, 50, 3320-3328.	1.8	56
13	Plant cell factories as a source for anti-cancer lignans. Phytochemistry Reviews, 2002, 1, 27-35.	3.1	49
14	Efficacy of Daphne oleoides subsp. kurdica used for wound healing: Identification of active compounds through bioassay guided isolation technique. Journal of Ethnopharmacology, 2012, 141, 1058-1070.	2.0	45
15	Occurrence of 5-methoxypodophyllotoxin in plants, cell cultures and regenerated plants of Linum flavum. Plant Cell, Tissue and Organ Culture, 1990, 23, 93-100.	1.2	35
16	Phytoestrogens as natural prodrugs in cancer prevention: dietary flavonoids. Phytochemistry Reviews, 2009, 8, 375-386.	3.1	35
17	Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans. International Journal of Molecular Sciences, 2018, 19, 990.	1.8	34
18	Flavones as tyrosinase inhibitors: kinetic studies <i>in vitro</i> and <i>in silico</i> . Phytochemical Analysis, 2020, 31, 314-321.	1.2	34

#	Article	IF	CITATIONS
19	Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochemistry Reviews, 2018, 17, 973-1005.	3.1	32
20	Over 3 decades of research on dietary flavonoid antioxidants and cancer prevention: What have we achieved?. Phytochemistry Reviews, 2019, 18, 989-1004.	3.1	32
21	The Methoxylated Flavones Eupatorin and Cirsiliol Induce CYP1 Enzyme Expression in MCF7 Cells. Journal of Natural Products, 2009, 72, 1390-1394.	1.5	28
22	miRNAs as Regulators of Antidiabetic Effects of Fucoidans. EFood, 2020, 1, 2-11.	1.7	28
23	Tangeretin and its metabolite 4′â€hydroxytetramethoxyflavone attenuate EGFâ€stimulated cell cycle progression in hepatocytes; role of inhibition at the level of mTOR/p70S6K. British Journal of Pharmacology, 2011, 162, 1781-1791.	2.7	27
24	Flavonols with a catechol or pyrogallol substitution pattern on ring B readily form stable dimers in phosphate buffered saline at four degrees celsius. Food Chemistry, 2020, 311, 125902.	4.2	23
25	Activity of Antioxidants from Crocus sativus L. Petals: Potential Preventive Effects towards Cardiovascular System. Antioxidants, 2020, 9, 1102.	2.2	22
26	Thiophene interconversions in Tagetes patula hairy-root cultures. Phytochemistry, 1995, 38, 1193-1197.	1.4	20
27	Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochemistry Reviews, 2008, 7, 431-443.	3.1	20
28	New Hydrogels Enriched with Antioxidants from Saffron Crocus Can Find Applications in Wound Treatment and/or Beautification. Skin Pharmacology and Physiology, 2018, 31, 95-98.	1.1	19
29	A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules, 2021, 26, 3868.	1.7	19
30	Dihydromyricetin Attenuates Streptozotocinâ€induced Liver Injury and Inflammation in Rats via Regulation of NFâ€ <i>l²</i> B and AMPK Signaling Pathway. EFood, 2020, 1, 188-195.	1.7	18
31	Screening a diverse collection of <i>Artemisia annua</i> germplasm accessions for the antimalarial compound, artemisinin. Plant Genetic Resources: Characterisation and Utilisation, 2012, 10, 152-154.	0.4	17
32	Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Critical Reviews in Food Science and Nutrition, 2023, 63, 2773-2789.	5.4	17
33	Increases in leaf artemisinin concentration in Artemisia annua in response to the application of phosphorus and boron. Industrial Crops and Products, 2011, 34, 1465-1473.	2.5	16
34	Thiophene biosynthesis in Tagetes roots: molecular versus metabolic regulation. Plant Cell, Tissue and Organ Culture, 1994, 38, 159-165.	1.2	14
35	Phytoestrogens as natural prodrugs in cancer prevention: towards a mechanistic model. Phytochemistry Reviews, 2014, 13, 853-866.	3.1	14
36	Design, synthesis and antitrypanosomal activities of 2,6-disubstituted-4,5,7-trifluorobenzothiophenes. European Journal of Medicinal Chemistry, 2016, 108, 347-353.	2.6	14

#	Article	IF	CITATIONS
37	Stability and antioxidant capacity of epigallocatechin gallate in Dulbecco's modified eagle medium. Food Chemistry, 2022, 366, 130521.	4.2	14
38	A Multifactorial Comparison of Ternary Combinations of Essential Oils in Topical Preparations to Current Antibiotic Prescription Therapies for the Control of Acne Vulgaris-Associated Bacteria Phytotherapy Research, 2017, 31, 410-417.	2.8	12
39	Synthesis and antitrypanosomal activities of novel pyridylchalcones. European Journal of Medicinal Chemistry, 2017, 128, 213-218.	2.6	10
40	The Synthesis of Chalcones as Anticancer Prodrugs and their Bioactivation in CYP1 Expressing Breast Cancer Cells. Medicinal Chemistry, 2018, 14, 322-332.	0.7	9
41	Chemical properties of thymoquinone, a monoterpene isolated from the seeds of Nigella sativa Linn Pharmacological Research, 2018, 133, 151.	3.1	8
42	Effect of antidepressant drugs on the brain sphingolipid system. Journal of Psychopharmacology, 2020, 34, 716-725.	2.0	8
43	Thiophene interconversion in elicitor-treated roots ofTagetes patula L Plant Cell Reports, 1995, 15, 133-137.	2.8	7
44	Regulation of thiophene biosynthesis by sulphate in roots of marigolds. New Phytologist, 1997, 135, 175-181.	3.5	7
45	Application of dietary supplements in the prevention of type 2 diabetes-related cardiovascular complications. Phytochemistry Reviews, 2021, 20, 181-209.	3.1	7
46	Effect of exogenous auxin on root morphology and secondary metabolism in Tagetes patula hairy root cultures. Physiologia Plantarum, 1995, 93, 233-240.	2.6	6
47	In vitro and in silico assessment of DNA interaction, topoisomerase I and II inhibition properties of chrysosplenetin. International Journal of Biological Macromolecules, 2020, 163, 1053-1059.	3.6	5
48	Artemisinin Cocrystals for Bioavailability Enhancement. Part 1: Formulation Design and Role of the Polymeric Excipient. Molecular Pharmaceutics, 2021, 18, 4256-4271.	2.3	5
49	Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum flavum L Reference Series in Phytochemistry, 2021, , 503-540.	0.2	5
50	Artemisinin Cocrystals for Bioavailability Enhancement. Part 2: <i>In Vivo</i> Bioavailability and Physiologically Based Pharmacokinetic Modeling. Molecular Pharmaceutics, 2021, 18, 4272-4289.	2.3	5
51	Molecular and metabolic control of secondary metabolism. Plant Cell, Tissue and Organ Culture, 1995, 43, 127-130.	1.2	4
52	Analysis of plant secondary metabolism using stable isotopeâ€labelled precursors. Phytochemical Analysis, 2021, 32, 62-68.	1.2	4
53	Artemisinin–acetylenedicarboxylic acid cocrystal: screening, structure determination, and physicochemical property characterisation. CrystEngComm, 2022, 24, 1056-1067.	1.3	4
54	The synthesis of 4,6-diaryl-2-pyridones and their bioactivation in CYP1 expressing breast cancer cells. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1403-1406.	1.0	3

#	Article	IF	CITATIONS
55	Lacto-fermented polypeptides integrated with edible coatings for mango (Mangifera indica L.) bio-preservation. Food Control, 2022, 134, 108708.	2.8	3
56	Anticancer Potential of Flavones. Proceedings (mdpi), 2017, 1, .	0.2	2
57	Chemopreventive Potential of Flavones, Flavonols, and their Glycosides. , 2020, , 1-19.		2
58	The discovery of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines. European Journal of Medicinal Chemistry, 2021, 209, 112871.	2.6	1
59	Chemopreventive Potential of Flavones, Flavonols, and their Glycosides. , 2021, , 97-115.		1
60	Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L Reference Series in Phytochemistry, 2020, , 1-38.	0.2	1
61	Medical imperialism. New Scientist, 2010, 205, 26-27.	0.0	0