Didier Marion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2716831/publications.pdf

Version: 2024-02-01

50276 76900 5,949 112 46 74 citations h-index g-index papers 115 115 115 3810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The SISHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. Molecular Horticulture, 2022, 2, .	5.8	8
2	Critical structural elements for the antigenicity of wheat allergen LTP1 (Tri a 14) revealed by site-directed mutagenesis. Scientific Reports, 2022, 12, .	3.3	1
3	Bioinspired co-polyesters of hydroxy-fatty acids extracted from tomato peel agro-wastes and glycerol with tunable mechanical, thermal and barrier properties. Industrial Crops and Products, 2021, 170, 113718.	5.2	17
4	Unraveling Cuticle Formation, Structure, and Properties by Using Tomato Genetic Diversity. Frontiers in Plant Science, 2021, 12, 778131.	3.6	9
5	The Complex Architecture of Plant Cuticles and Its Relation to Multiple Biological Functions. Frontiers in Plant Science, 2021, 12, 782773.	3.6	19
6	Assembly of tomato fruit cuticles: a crossâ€ŧalk between the cutin polyester and cell wall polysaccharides. New Phytologist, 2020, 226, 809-822.	7.3	56
7	Minor components and wheat quality: Perspectives on climate changes. Journal of Cereal Science, 2020, 94, 103001.	3.7	19
8	Relationships between puroindoline A-prolamin interactions and wheat grain hardness. PLoS ONE, 2020, 15, e0225293.	2.5	12
9	The Spatiotemporal Deposition of Lysophosphatidylcholine Within Starch Granules of Maize Endosperm and its Relationships to the Expression of Genes Involved in Endoplasmic Reticulum–Amyloplast Lipid Trafficking and Galactolipid Synthesis. Plant and Cell Physiology, 2019, 60, 139-151.	3.1	13
10	Rheology and structural changes of plasticized zeins in the molten state. Rheologica Acta, 2017, 56, 941-953.	2.4	12
11	Responses to Hypoxia and Endoplasmic Reticulum Stress Discriminate the Development of Vitreous and Floury Endosperms of Conventional Maize (Zea mays) Inbred Lines. Frontiers in Plant Science, 2017, 8, 557.	3.6	19
12	Assembly of the Cutin Polyester: From Cells to Extracellular Cell Walls. Plants, 2017, 6, 57.	3.5	42
13	Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization. Plant Physiology, 2016, 170, 807-820.	4.8	51
14	Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. Journal of Cereal Science, 2016, 68, 148-154.	3.7	41
15	A single amino acid substitution in puroindoline b impacts its self-assembly and the formation of heteromeric assemblies with puroindoline a. Journal of Cereal Science, 2015, 64, 116-125.	3.7	5
16	Lipid Partitioning in Maize (<i>Zea mays L.</i>) Endosperm Highlights Relationships among Starch Lipids, Amylose, and Vitreousness. Journal of Agricultural and Food Chemistry, 2015, 63, 3551-3558.	5.2	43
17	The antioxidative effect of bread crust in a mouse macrophage reporter cell line. Free Radical Biology and Medicine, 2014, 75, S19.	2.9	2
18	Matrixâ€assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer. Plant Journal, 2014, 80, 926-935.	5.7	31

#	Article	IF	CITATIONS
19	Analyses of Tomato Fruit Brightness Mutants Uncover Both Cutin-Deficient and Cutin-Abundant Mutants and a New Hypomorphic Allele of <i>GDSL Lipase</i> Å Â Â. Plant Physiology, 2014, 164, 888-906.	4.8	81
20	Wheat grain softness protein (Gsp1) is a puroindoline-like protein that displays a specific post-translational maturation and does not interact with lipids. Journal of Cereal Science, 2013, 58, 117-122.	3.7	9
21	Interfacial properties of functionalized assemblies of hydroxy-fatty acid salts isolated from fruit tomato peels. Green Chemistry, 2013, 15, 341-346.	9.0	27
22	Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany, 2012, 63, 1001-1011.	4.8	49
23	Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle. Plant Cell, 2012, 24, 3119-3134.	6.6	175
24	Impact of Low Hydration of Barley Grain on β-Glucan Degradation and Lipid Transfer Protein (LTP1) Modifications During the Malting Process. Journal of Agricultural and Food Chemistry, 2011, 59, 8256-8264.	5.2	8
25	Immunoglobulinâ€Eâ€binding epitopes of wheat allergens in patients with food allergy to wheat and in mice experimentally sensitized to wheat proteins. Clinical and Experimental Allergy, 2011, 41, 1478-1492.	2.9	53
26	New insight into puroindoline function inferred from their subcellular localization in developing hard and soft near-isogenic endosperm and their relationship with polymer size of storage proteins. Journal of Cereal Science, 2011, 53, 231-238.	3.7	42
27	Proteomic analysis of peripheral layers during wheat (<i>Triticum aestivum</i> L.) grain development. Proteomics, 2011, 11, 371-379.	2.2	43
28	Raman Study of the Puroindoline-a/Lysopamitoylphosphatidylcholine Interaction in Free Standing Black Films. Langmuir, 2009, 25, 8181-8186.	3.5	5
29	The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins. Biochemical and Biophysical Research Communications, 2009, 390, 780-785.	2.1	24
30	The structure of "defective in induced resistance―protein of <i>Arabidopsis thaliana</i> , DIR1, reveals a new type of lipid transfer protein. Protein Science, 2008, 17, 1522-1530.	7.6	90
31	Structure and Orientation of Puroindolines into Wheat Galactolipid Monolayers. Langmuir, 2008, 24, 10901-10909.	3.5	22
32	Plant lipid binding proteins: Properties and applications. Biotechnology Advances, 2007, 25, 195-197.	11.7	35
33	Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta, 2007, 226, 591-600.	3.2	69
34	Specific Adduction of Plant Lipid Transfer Protein by an Allene Oxide Generated by 9-Lipoxygenase and Allene Oxide Synthase. Journal of Biological Chemistry, 2006, 281, 38981-38988.	3.4	59
35	Stability of Barley and Malt Lipid Transfer Protein 1 (LTP1) toward Heating and Reducing Agents: Relationships with the Brewing Process. Journal of Agricultural and Food Chemistry, 2006, 54, 3108-3113.	5.2	86
36	Crystallization of DIR1, a LTP2-like resistance signalling protein fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 702-704.	0.7	16

#	Article	IF	Citations
37	Puroindoline-a and alpha1-purothionin form ion channels in giant liposomes but exert different toxic actions on murine cells. FEBS Journal, 2006, 273, 1710-1722.	4.7	22
38	Interaction between puroindolines and the major polar lipids of wheat seed endosperm at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2006, 53, 167-174.	5.0	10
39	Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins: Structure, Function and Bioinformatics, 2005, 59, 356-367.	2.6	37
40	Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics, 2005, 5, 2849-2858.	2.2	132
41	Structure of β-Purothionin in Membranes: A Two-Dimensional Infrared Correlation Spectroscopy Studyâ€. Biochemistry, 2005, 44, 52-61.	2.5	37
42	French Bread Loaf Volume Variations and Digital Image Analysis of Crumb Grain Changes Induced by the Minor Components of Wheat Flour. Cereal Chemistry, 2005, 82, 20-27.	2.2	56
43	Heterologous Expression and Purification of Active Divercin V41, a Class IIa Bacteriocin Encoded by a Synthetic Gene in <i>Escherichia coli</i>	2.2	68
44	Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation. Molecular Biology of the Cell, 2004, 15, 5047-5052.	2.1	115
45	Mutational Analysis of Mesentericin Y105, an Anti-Listeria Bacteriocin, for Determination of Impact on Bactericidal Activity, In Vitro Secondary Structure, and Membrane Interaction. Applied and Environmental Microbiology, 2004, 70, 4672-4680.	3.1	42
46	Neuronal and muscular alterations caused by two wheat endosperm proteins, puroindoline-a and alpha1-purothionin, are due to ion pore formation. European Biophysics Journal, 2004, 33, 283-4.	2.2	12
47	A bacterial expression system revisited for the recombinant production of cystine-rich plant lipid transfer proteins. Biochemical and Biophysical Research Communications, 2004, 316, 1202-1209.	2.1	24
48	Early expression of grain hardness in the developing wheat endosperm. Planta, 2003, 216, 699-706.	3.2	36
49	Study of the interaction between end-capped telechelic polymers and the wheat lipid transfer protein LTP1, in solution and at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2003, 32, 213-221.	5.0	9
50	Diversity of puroindolines as revealed by two-dimensional electrophoresis. Proteomics, 2003, 3, 168-174.	2.2	31
51	Puroindolines Form Ion Channels in Biological Membranes. Biophysical Journal, 2003, 84, 2416-2426.	0.5	46
52	Functionality of lipids and lipid-protein interactions in cereal-derived food products. Oleagineux Corps Gras Lipides, 2003, 10, 47-56.	0.2	13
53	Localization of Puroindoline-a and Lipids in Bread Dough Using Confocal Scanning Laser Microscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 6078-6085.	5.2	37
54	Interaction of Surfactants and Polymer-Grafted Lipids with a Plant Lipid Transfer Protein, LTP1. Langmuir, 2002, 18, 7309-7312.	3.5	6

#	Article	IF	CITATIONS
55	Interaction between \hat{l}^2 -Purothionin and Dimyristoylphosphatidylglycerol:A 31P-NMR and Infrared Spectroscopic Study. Biophysical Journal, 2002, 83, 2074-2083.	0.5	41
56	From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science, 2002, 7, 293-296.	8.8	297
57	Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 106, 19-27.	3.6	46
58	Effects of acylation on the structure, lipid binding, and transfer activity of wheat lipid transfer protein. The Protein Journal, 2002, 21, 195-201.	1.1	7
59	Identification of a New Form of Lipid Transfer Protein (LTP1) in Wheat Seeds. Journal of Agricultural and Food Chemistry, 2001, 49, 1805-1808.	5.2	29
60	Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Letters, 2001, 489, 55-58.	2.8	56
61	A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Letters, 2001, 509, 27-30.	2.8	143
62	Evidence of the Glycation and Denaturation of LTP1 during the Malting and Brewing Process. Journal of Agricultural and Food Chemistry, 2001, 49, 4942-4949.	5.2	83
63	Interfacial behaviour of wheat puroindolines: monolayers of puroindolines at the air-water interface. Colloid and Polymer Science, 2001, 279, 607-614.	2.1	15
64	Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. FEBS Journal, 2001, 268, 384-388.	0.2	51
65	Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. FEBS Journal, 2001, 268, 1400-1403.	0.2	64
66	Interfacial Behavior of Wheat Puroindolines: Study of Adsorption at the Air–Water Interface from Surface Tension Measurement Using Wilhelmy Plate Method. Journal of Colloid and Interface Science, 2001, 244, 245-253.	9.4	50
67	Genetic and Environmental Effects on Puroindoline-a and Puroindoline-b Content and their Relationship to Technological Properties in French Bread Wheats. Journal of Cereal Science, 2001, 34, 37-47.	3.7	54
68	Potential application of plant lipid transfer proteins for drug delivery. Biochemical Pharmacology, 2001, 62, 555-560.	4.4	50
69	The wide binding properties of a wheat nonspecific lipid transfer protein. FEBS Journal, 2000, 267, 1117-1124.	0.2	78
70	Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 65-72.	2.6	67
71	Purification and Structural Characterization of LTP1 Polypeptides from Beer. Journal of Agricultural and Food Chemistry, 2000, 48, 5023-5029.	5.2	108
72	Variation in puroindoline polypeptides in Australian wheat cultivars in relation to grain hardness. Functional Plant Biology, 2000, 27, 153.	2.1	9

#	Article	IF	CITATIONS
73	The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. FEBS Journal, 1999, 264, 562-568.	0.2	125
74	Solvation study of the non-specific lipid transfer protein from wheat by intermolecular NOEs with water and small organic molecules. Journal of Biomolecular NMR, 1999, 15, 213-225.	2.8	13
75	Production in <i>Escherichia coli</i> and siteâ€directed mutagenesis of a 9â€kDa nonspecific lipid transfer protein from wheat. FEBS Journal, 1999, 260, 861-868.	0.2	20
76	Delineation of Key Amino Acid Side Chains and Peptide Domains for Antimicrobial Properties of Divercin V41, a Pediocin-Like Bacteriocin Secreted by <i>Carnobacterium divergens</i> V41. Applied and Environmental Microbiology, 1999, 65, 2895-2900.	3.1	32
77	Comparison of solution and crystal structures of maize nonspecific lipid transfer protein: A model for a potential in vivo lipid carrier protein., 1998, 31, 160-171.		37
78	Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and) Tj ETQq0 0 0 rgBT Relationships with their in vitro antifungal properties. Plant Science, 1998, 138, 121-135.	/Overlock 3.6	10 Tf 50 547 161
79	Comparison of different soybean phospholipidic fractions as dietary supplements for common carp, Cyprinus carpio, larvae. Aquaculture, 1998, 161, 225-235.	3.5	63
80	Interaction of the Wheat Endosperm Lipid-Binding Protein Puroindoline-a with Phospholipids. Archives of Biochemistry and Biophysics, 1998, 360, 179-186.	3.0	31
81	Solution Structure of <i>Ace </i> -AMP1, a Potent Antimicrobial Protein Extracted from Onion Seeds. Structural Analogies with Plant Nonspecific Lipid Transfer Proteins. Biochemistry, 1998, 37, 3623-3637.	2.5	102
82	Effect of Puroindolines on the Breadmaking Properties of Wheat Flour. Cereal Chemistry, 1998, 75, 222-229.	2.2	89
83	Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology (United Kingdom), 1998, 144, 2837-2844.	1.8	126
84	The wheat proteins puroindoline-a and $\hat{l}\pm 1$ -purothionin induce nodal swelling in myelinated axons. NeuroReport, 1998, 9, 3803-3803.	1.2	19
85	Localization of a phosphatidylglycerol/ phosphatidylinositol transfer protein in <i>Aspergillus oryzae</i> . Canadian Journal of Microbiology, 1998, 44, 945-953.	1.7	3
86	Interaction of Puroindolines with Wheat Flour Polar Lipids Determines Their Foaming Properties. Journal of Agricultural and Food Chemistry, 1997, 45, 108-116.	5.2	161
87	1 H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein. Global fold of the complex. FEBS Letters, 1997, 416, 130-134.	2.8	73
88	Determination of the Secondary Structure and Conformation of Puroindolines by Infrared and Raman Spectroscopyâ€. Biochemistry, 1996, 35, 12712-12722.	2.5	76
89	Interaction of two lipid binding proteins with membrane lipids: comparative study using the monolayer technique and IR spectroscopy. Thin Solid Films, 1996, 284-285, 326-329.	1.8	8
90	Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Science, 1996, 5, 565-577.	7.6	109

#	Article	IF	CITATIONS
91	Purification and Activity of a Wheat 9-kDa Lipid Transfer Protein Expressed in Escherichia coli as a Fusion with the Maltose Binding Protein. Protein Expression and Purification, 1995, 6, 597-603.	1.3	11
92	Purification and characterization of a novel specific phosphatidylglycerol-phosphatidylinositol transfer protein with high activity from Aspergillus oryzae. Lipids and Lipid Metabolism, 1995, 1256, 18-24.	2.6	11
93	Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophysical Journal, 1995, 69, 974-988.	0.5	112
94	Gluten Viscoelasticity Is Not Lipid-Mediated. A Rheological and Molecular Flexibility Study on Lipid and Non-Prolamin Protein Depleted Glutens. Journal of Agricultural and Food Chemistry, 1995, 43, 1170-1176.	5.2	11
95	Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Molecular Biology, 1994, 25, 43-57.	3.9	350
96	Two-dimensional 1H-NMR studies of maize lipid-transfer protein. Sequence-specific assignment and secondary structure. FEBS Journal, 1994, 222, 1047-1054.	0.2	24
97	Three-Dimensional Structure in Solution of a Wheat Lipid-Transfer Protein from Multidimensional 1H-NMR Data. A New Folding for Lipid Carriers. FEBS Journal, 1994, 226, 413-422.	0.2	144
98	THE PROTECTION OF BEER FOAM AGAINST LIPID-INDUCED DESTABILIZATION. Journal of the Institute of Brewing, 1994, 100, 23-25.	2.3	70
99	Filamentous Fungi with High Cytosolic Phospholipid Transfer Activity in the Presence of Exogenous Phospholipid. Applied and Environmental Microbiology, 1994, 60, 3390-3395.	3.1	8
100	Complete amino acid sequence of puroindoline, a new basic and cystineâ€rich protein with a unique tryptophanâ€rich domain, isolated from wheat endosperm by Triton Xâ€114 phase partitioning. FEBS Letters, 1993, 329, 336-340.	2.8	214
101	Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. Journal of Agricultural and Food Chemistry, 1993, 41, 1570-1576.	5.2	86
102	Crystallographic data for the 9000 dalton wheat non-specific phospholipid transfer protein. Journal of Molecular Biology, 1992, 226, 563-564.	4.2	9
103	Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the $\hat{l}\pm$ -helix structure. BBA - Proteins and Proteomics, 1992, 1121, 137-152.	2.1	90
104	Two- and three-dimensional proton NMR studies of a wheat phospholipid transfer protein: sequential resonance assignments and secondary structure. Biochemistry, 1991, 30, 11600-11608.	2.5	58
105	Increased endoplasmic reticulum content of Phanerochaete chrysosporium INA-12 by inositol phospholipid precursor in relation to peroxidase excretion. Applied Microbiology and Biotechnology, 1991, 36, 265-269.	3.6	7
106	Study of the structure of N-acyldipalmitoylphosphatidylethanolamines in aqueous dispersion by infrared and Raman spectroscopies. Biochemistry, 1990, 29, 4592-4599.	2.5	51
107	A phosphorus magnetic resonance spectroscopy and a differential scanning calorimetry study of the physical properties of N-acylphosphatidylethanolamines in aqueous dispersions. Chemistry and Physics of Lipids, 1988, 46, 43-50.	3.2	49
108	Lipid-protein interactions in wheat gluten: a phosphorus nuclear magnetic resonance spectroscopy and freeze-fracture electron microscopy study. Journal of Cereal Science, 1987, 5, 101-115.	3.7	40

#	Article	IF	CITATIONS
109	A comparison of the lipoprotein profiles in male trout (Salmo gairdneri) before maturity and during spermiation. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1982, 73, 849-855.	0.2	15
110	Essential fatty acids in trout serum lipoproteins, vitellogenin and egg lipids. Lipids, 1981, 16, 593-600.	1.7	57
111	Plant Lipid Transfer Proteins: Relationships Between Allergenicity and Structural, Biological and Technological Properties., 0,, 57-69.		7
112	Spatial distribution of starch, proteins and lipids in maize endosperm probed by scanning transmission X-ray microscopy. Journal of Spectral Imaging, 0, , .	0.0	1