Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2716356/publications.pdf

Version: 2024-02-01

361413 414414 1,997 32 20 32 h-index citations g-index papers 34 34 34 1293 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance. Solar Physics, 2014, 289, 3483-3530.	2.5	437
2	EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON <i>SDO</i> /HMI OBSERVATION. Astrophysical Journal, 2012, 748, 77.	4.5	315
3	Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison of Methods. Solar Physics, 2006, 235, 161-190.	2.5	286
4	WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?. Astrophysical Journal Letters, 2015, 804, L28.	8.3	174
5	INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS. Astrophysical Journal, 2013, 772, 115.	4.5	68
6	The Global Solar Magnetic Field Through a Full Sunspot Cycle: Observations and Model Results. Solar Physics, 2008, 252, 19-31.	2. 5	63
7	A NON-RADIAL ERUPTION IN A QUADRUPOLAR MAGNETIC CONFIGURATION WITH A CORONAL NULL. Astrophysical Journal, 2012, 757, 149.	4.5	60
8	Investigating the Magnetic Imprints of Major Solar Eruptions with SDO/HMI High-cadence Vector Magnetograms. Astrophysical Journal, 2017, 839, 67.	4.5	56
9	PHOTOSPHERIC ELECTRIC FIELDS AND ENERGY FLUXES IN THE ERUPTIVE ACTIVE REGION NOAA 11158. Astrophysical Journal, 2015, 811, 16.	4.5	47
10	An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona. Astrophysical Journal Letters, 2018, 855, L16.	8.3	46
11	A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission. Astrophysical Journal, Supplement Series, 2019, 242, 7.	7.7	46
12	Predicting Solar Flares with Machine Learning: Investigating Solar Cycle Dependence. Astrophysical Journal, 2020, 895, 3.	4.5	42
13	Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions. Solar Physics, 2013, 287, 279-291.	2,5	41
14	THE MAGNETIC FIELD OF ACTIVE REGION 11158 DURING THE 2011 FEBRUARY 12-17 FLARES: DIFFERENCES BETWEEN PHOTOSPHERIC EXTRAPOLATION AND CORONAL FORWARD-FITTING METHODS. Astrophysical Journal, 2014, 785, 34.	4.5	38
15	Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method. Astrophysical Journal, 2017, 840, 40.	4.5	37
16	Electric-current Neutralization, Magnetic Shear, and Eruptive Activity in Solar Active Regions. Astrophysical Journal Letters, 2017, 846, L6.	8.3	35
17	Correction of Offset in MDI/SOHO Magnetograms. Solar Physics, 2004, 219, 39-53.	2.5	29
18	Vector Magnetic Field Synoptic Charts from the Helioseismic and Magnetic Imager (HMI). Solar Physics, 2017, 292, 1.	2.5	26

#	Article	IF	CITATIONS
19	The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution. Astrophysical Journal, Supplement Series, 2020, 250, 28.	7.7	22
20	Evolution of Magnetic Helicity in Solar Cycle 24. Astrophysical Journal Letters, 2019, 877, L36.	8.3	21
21	Roles of Photospheric Motions and Flux Emergence in the Major Solar Eruption on 2017 September 6. Astrophysical Journal, 2018, 869, 90.	4.5	17
22	Parameters Derived from the SDO/HMI Vector Magnetic Field Data: Potential to Improve Machine-learning-based Solar Flare Prediction Models. Astrophysical Journal, 2019, 884, 175.	4.5	17
23	A data-driven MHD model of the global solar corona within Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). Journal of Physics: Conference Series, 2017, 837, 012015.	0.4	14
24	A Note on Computation of Relative Magnetic-Helicity Flux Across the Photosphere. Solar Physics, 2013, 283, 283-294.	2.5	12
25	Sunspot Rotation and the M-Class Flare in Solar Active Region NOAA 11158. Solar Physics, 2015, 290, 2199-2209.	2.5	11
26	Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. IV. Application to Solar Observations. Astrophysical Journal, 2021, 922, 41.	4.5	11
27	Improvement of the Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Inversion Code. Astrophysical Journal, 2021, 923, 84.	4.5	7
28	Fast and Accurate Emulation of the SDO/HMI Stokes Inversion with Uncertainty Quantification. Astrophysical Journal, 2021, 911, 130.	4.5	5
29	SynthlA: A Synthetic Inversion Approximation for the Stokes Vector Fusing SDO and Hinode into a Virtual Observatory. Astrophysical Journal, Supplement Series, 2022, 259, 24.	7.7	5
30	Are the Magnetic Fields Radial in the Solar Polar Region?. Research Notes of the AAS, 2021, 5, 134.	0.7	4
31	On the Hemispheric Bias Seen in Vector Magnetic Field Data. Solar Physics, 2022, 297, 1.	2.5	4
32	Self-cancellation of solar ephemeral regions observed by SDO. Proceedings of the International Astronomical Union, 2012, 8, 159-160.	0.0	0