Yingze Song

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2715990/yingze-song-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 2,704 47 51 h-index g-index citations papers 3,516 5.6 12 51 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
47	Manipulating electrocatalytic activity of carbon architecture by supercritical carbon dioxide foaming and defect engineering for LiB chemistry. <i>Journal of Power Sources</i> , 2021 , 514, 230607	8.9	4
46	A Brief Review of Catalytic Cathode Materials for Na-CO2 Batteries. <i>Catalysts</i> , 2021 , 11, 603	4	22
45	Architecturing aligned orthorhombic Nb2O5 nanowires toward sodium-ion hybrid capacitor and LithiumBulfur battery applications. <i>FlatChem</i> , 2021 , 27, 100236	5.1	8
44	Recent advances of metal phosphides for LiB chemistry. <i>Journal of Energy Chemistry</i> , 2021 , 55, 533-548	12	47
43	Potassium mediated Co-Fe-based Prussian blue analogue architectures for aqueous potassium-ion storage. <i>Chemical Communications</i> , 2021 , 57, 7019-7022	5.8	5
42	Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted LiB chemistry. <i>Chemical Engineering Journal</i> , 2021 , 418, 129407	14.7	9
41	Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced LiB full batteries. <i>Energy Storage Materials</i> , 2021 , 41, 141-151	19.4	22
40	An in-situ electrodeposited cobalt selenide promotor for polysulfide management targeted stable Lithium-Sulfur batteries. <i>Journal of Colloid and Interface Science</i> , 2021 , 600, 278-287	9.3	2
39	Vanadium atom modulated electrocatalyst for accelerated LiS chemistry. <i>Nano Energy</i> , 2021 , 89, 10641	417.1	5
38	Metal organic frameworks-derived multi-shell copper-cobalt-zinc sulfide cubes for sodium-ion battery anode. <i>Chemical Engineering Journal</i> , 2021 , 425, 131501	14.7	2
37	Phosphorization Engineering on Metal-Organic Frameworks for Quasi-Solid-State Asymmetry Supercapacitors. <i>Small</i> , 2021 , 17, e2007062	11	29
36	Thermal CVD growth of graphene on copper particles targeting tungsten-copper composites with superior wear and arc ablation resistance properties. <i>Diamond and Related Materials</i> , 2020 , 104, 107765	3.5	6
35	MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3027-3034	13	58
34	Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Liß chemistry. <i>Nano Energy</i> , 2020 , 70, 104555	17.1	101
33	MOF-derived conductive carbon nitrides for separator-modified Liß batteries and flexible supercapacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1757-1766	13	73
32	Defect engineering on carbon black for accelerated Li-S chemistry. <i>Nano Research</i> , 2020 , 13, 3315-3320	10	25
31	Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium fulfur batteries. <i>Journal of Energy Chemistry</i> , 2020 , 42, 34-42	12	56

(2018-2020)

30	Rationalizing Electrocatalysis of Liß Chemistry by Mediator Design: Progress and Prospects. <i>Advanced Energy Materials</i> , 2020 , 10, 1901075	21.8	184
29	Direct synthesis of flexible graphene glass with macroscopic uniformity enabled by copper-foam-assisted PECVD. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4813-4822	13	24
28	Solar-driven capacity enhancement of aqueous redox batteries with a vertically oriented tin disulfide array as both the photo-cathode and battery-anode. <i>Chemical Communications</i> , 2019 , 55, 1291	-₹294	10
27	Scalable Salt-Templated Synthesis of Nitrogen-Doped Graphene Nanosheets toward Printable Energy Storage. <i>ACS Nano</i> , 2019 , 13, 7517-7526	16.7	60
26	Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. <i>Nano Energy</i> , 2019 , 60, 247-256	17.1	97
25	Accelerated LiB chemistry at a cooperative interface built in situ. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20750-20759	13	15
24	Conductive and Catalytic VTe@MgO Heterostructure as Effective Polysulfide Promotor for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2019 , 13, 13235-13243	16.7	71
23	Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. <i>Nano Research</i> , 2019 , 12, 3051-3058	10	39
22	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li-S Batteries. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	80
21	All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. <i>Nano Research</i> , 2019 , 12, 331-338	10	48
20	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15733-15741	9.5	70
19	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a High-Sulfur-Loading Host for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1800201	21.8	146
18	A Highly Stretchable Cross-Linked Polyacrylamide Hydrogel as an Effective Binder for Silicon and Sulfur Electrodes toward Durable Lithium-Ion Storage. <i>Advanced Functional Materials</i> , 2018 , 28, 170501	5 ^{15.6}	114
17	Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. <i>Chemical Society Reviews</i> , 2018 , 47, 4242-4257	58.5	70
16	Biotemplated Synthesis of Transition Metal Nitride Architectures for Flexible Printed Circuits and Wearable Energy Storages. <i>Advanced Functional Materials</i> , 2018 , 28, 1805510	15.6	30
15	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithiumBulfur batteries. <i>Nano Energy</i> , 2018 , 53, 432-439	17.1	76
14	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li-S Batteries. <i>ACS Nano</i> , 2018 , 12, 10240-10250	16.7	104
13	Synchronous immobilization and conversion of polysulfides on a VO2NN binary host targeting high sulfur load LiB batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2620-2630	35.4	327

12	One-pot facile synthesis of Bi 2 S 3 /SnS 2 /Bi 2 O 3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation. <i>Applied Surface Science</i> , 2017 , 420, 233-242	6.7	61
11	Structure and Properties of Reduced Graphene Oxide/Natural Rubber Latex Nanocomposites. Journal of Nanoscience and Nanotechnology, 2017 , 17, 1133-139	1.3	8
10	Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4884-4891	13	135
9	Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets. <i>Materials and Design</i> , 2015 , 88, 950-957	8.1	123
8	Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. <i>Polymer Composites</i> , 2015 , 36, 556-565	3	121
7	Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 76, 73-81	8.4	104
6	Enhanced thermal and mechanical properties of polyimide/graphene composites. <i>Macromolecular Research</i> , 2014 , 22, 983-989	1.9	36
5	Epoxy composites filled with one-dimensional SiC nanowiresEwo-dimensional graphene nanoplatelets hybrid nanofillers. <i>RSC Advances</i> , 2014 , 4, 59409-59417	3.7	21
4	Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber. <i>Materials & Design</i> , 2014 , 64, 687-693		33
3	Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. <i>Macromolecular Research</i> , 2014 , 22, 19-25	1.9	12
2	Deciphering the defect micro-environment of graphene for highly efficient Liß redox reactions. <i>EcoMat</i> ,e12182	9.4	4
1	A review of size engineering-enabled electrocatalysts for LiB chemistry. <i>Nanoscale Advances</i> ,	5.1	2