Ivan Robert Nabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2715562/publications.pdf

Version: 2024-02-01

34016 31759 15,212 104 52 101 citations h-index g-index papers 147 147 147 26630 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature, 2022, 605, 340-348.	13.7	108
2	DEEMD: Drug Efficacy Estimation Against SARS-CoV-2 Based on Cell Morphology With Deep Multiple Instance Learning. IEEE Transactions on Medical Imaging, 2022, 41, 3128-3145.	5.4	3
3	Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain. Scientific Reports, 2021, 11, 7810.	1.6	9
4	Caveolae: The FAQs. Traffic, 2020, 21, 181-185.	1.3	65
5	Hypoxia Attenuates Trastuzumab Uptake and Trastuzumab-Emtansine (T-DM1) Cytotoxicity through Redistribution of Phosphorylated Caveolin-1. Molecular Cancer Research, 2020, 18, 644-656.	1.5	17
6	ERGO: Efficient Recurrent Graph Optimized Emitter Density Estimation in Single Molecule Localization Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 1942-1956.	5.4	7
7	Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum. Scientific Reports, 2020, 10, 20937.	1.6	20
8	A Review of Super-Resolution Single-Molecule Localization Microscopy Cluster Analysis and Quantification Methods. Patterns, 2020, 1, 100038.	3.1	165
9	Biography—Ivan Robert Nabi. Cancer and Metastasis Reviews, 2020, 39, 333-333.	2.7	0
10	Preface. Cancer and Metastasis Reviews, 2020, 39, 335-335.	2.7	0
11	Tyrosine phosphorylation of tumor cell caveolin-1: impact on cancer progression. Cancer and Metastasis Reviews, 2020, 39, 455-469.	2.7	30
12	Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae. Scientific Reports, 2019, 9, 9888.	1.6	37
13	Caveolae and scaffold detection from single molecule localization microscopy data using deep learning. PLoS ONE, 2019, 14, e0211659.	1.1	13
14	Reticulon and CLIMP-63 regulate nanodomain organization of peripheral ER tubules. PLoS Biology, 2019, 17, e3000355.	2.6	39
15	Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells. Biochemistry and Cell Biology, 2019, 97, 638-646.	0.9	2
16	Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data. Bioinformatics, 2019, 35, 3468-3475.	1.8	10
17	Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget, 2019, 10, 6668-6677.	0.8	8
18	Expression of Gp78/Autocrine Motility Factor Receptor and Endocytosis of Autocrine Motility Factor in Human Thyroid Cancer Cells. Cureus, 2019, 11, e4928.	0.2	0

#	Article	IF	CITATIONS
19	Galectins as Adaptors: Linking Glycosylation and Metabolism with Extracellular Cues. Trends in Glycoscience and Glycotechnology, 2018, 30, SE167-SE177.	0.0	9
20	Super Resolution Network Analysis Defines the Molecular Architecture of Caveolae and Caveolin-1 Scaffolds. Scientific Reports, 2018, 8, 9009.	1.6	40
21	The phospho–caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell, 2017, 28, 2190-2201.	0.9	41
22	The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene, 2017, 36, 6244-6261.	2.6	97
23	Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents. PLoS ONE, 2017, 12, e0174483.	1.1	31
24	Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Molecular Metabolism, 2016, 5, 366-378.	3.0	38
25	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
26	Actin Cytoskeleton Regulation of Epithelial Mesenchymal Transition in Metastatic Cancer Cells. PLoS ONE, 2015, 10, e0119954.	1.1	104
27	Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration. PLoS ONE, 2015, 10, e0126056.	1.1	30
28	Distinct mechanisms controlling rough and smooth endoplasmic reticulum-mitochondria contacts. Journal of Cell Science, 2015, 128, 2759-65.	1.2	92
29	The galectin lattice at a glance. Journal of Cell Science, 2015, 128, 2213-2219.	1.2	254
30	p38 MAP kinase–dependent phosphorylation of the Gp78 E3 ubiquitin ligase controls ER–mitochondria association and mitochondria motility. Molecular Biology of the Cell, 2015, 26, 3828-3840.	0.9	37
31	Caveolin-1, galectin-3 and lipid raft domains in cancer cell signalling. Essays in Biochemistry, 2015, 57, 189-201.	2.1	16
32	Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 233-246.	1.7	67
33	Raft endocytosis of autocrine motility factor regulates mitochondrial dynamics via rac1 signaling and the gp78 ubiquitin ligase. Journal of Cell Science, 2013, 126, 3295-304.	1.2	21
34	Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Molecular Biology of the Cell, 2013, 24, 1153-1162.	0.9	162
35	Galectin-3– and phospho-caveolin-1–dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Molecular Biology of the Cell, 2013, 24, 2134-2145.	0.9	60
36	Peripheral Endoplasmic Reticulum Localization of Gp78 Ubiquitin Ligase Activity. Journal of Cell Science, 2012, 125, 1727-37.	1.2	21

#	Article	IF	CITATIONS
37	Galectin-3 Protein Regulates Mobility of N-cadherin and GM1 Ganglioside at Cell-Cell Junctions of Mammary Carcinoma Cells. Journal of Biological Chemistry, 2012, 287, 32940-32952.	1.6	83
38	Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 2012, 199, 425-435.	2.3	86
39	RING finger palmitoylation of the endoplasmic reticulum Gp78 E3 ubiquitin ligase. FEBS Letters, 2012, 586, 2488-2493.	1.3	26
40	Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration. American Journal of Pathology, 2012, 181, 2172-2187.	1.9	66
41	Coordinated expression of galectinâ€3 and caveolinâ€1 in thyroid cancer. Journal of Pathology, 2012, 228, 56-66.	2.1	27
42	The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity. Protoplasma, 2012, 249, 11-18.	1.0	8
43	Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release. Cell Death and Differentiation, 2011, 18, 1057-1070.	5.0	43
44	Caveolin-1 mediates Fas–BID signaling in hyperoxia-induced apoptosis. Free Radical Biology and Medicine, 2011, 50, 1252-1262.	1.3	39
45	Glycosylation, galectins and cellular signaling. Current Opinion in Cell Biology, 2011, 23, 383-392.	2.6	304
46	Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome. Molecular and Cellular Proteomics, 2011, 10, M110.007146.	2.5	33
47	A Role for KAI1 in Promotion of Cell Proliferation and Mammary Gland Hyperplasia by the gp78 Ubiquitin Ligase. Journal of Biological Chemistry, 2010, 285, 8830-8839.	1.6	34
48	Diagnostic Utility of Galectin-3 in Thyroid Cancer. American Journal of Pathology, 2010, 176, 2067-2081.	1.9	137
49	Lipid Rafts, Caveolae, and Their Endocytosis. International Review of Cell and Molecular Biology, 2010, 282, 135-163.	1.6	296
50	Pseudopodial Actin Dynamics Control Epithelial-Mesenchymal Transition in Metastatic Cancer Cells. Cancer Research, 2010, 70, 3780-3790.	0.4	243
51	Screen for Chemical Modulators of Autophagy Reveals Novel Therapeutic Inhibitors of mTORC1 Signaling. PLoS ONE, 2009, 4, e7124.	1.1	313
52	Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. Journal of Cell Biology, 2009, 185, 381-385.	2.3	305
53	Caveolinâ€1 regulation of dynaminâ€dependent, raftâ€mediated endocytosis of cholera toxin–B subâ€unit occurs independently of caveolae. Journal of Cellular and Molecular Medicine, 2009, 13, 3218-3225.	1.6	57
54	Cavin fever: regulating caveolae. Nature Cell Biology, 2009, 11, 789-791.	4.6	55

#	Article	IF	Citations
55	Adaptive Regulation at the Cell Surface by <i>N</i> i>â€Glycosylation. Traffic, 2009, 10, 1569-1578.	1.3	188
56	Metabolism, Cell Surface Organization, and Disease. Cell, 2009, 139, 1229-1241.	13.5	400
57	The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Molecular BioSystems, 2009, 5, 793.	2.9	74
58	Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer and Metastasis Reviews, 2008, 27, 715-735.	2.7	263
59	Evaluation of type 1 growth factor receptor family expression in benign and malignant thyroid lesions. American Journal of Surgery, 2008, 195, 667-673.	0.9	16
60	Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. Journal of Cell Biology, 2008, 180, 1261-1275.	2.3	171
61	Phosphorylated Caveolin-1 Regulates Rho/ROCK-Dependent Focal Adhesion Dynamics and Tumor Cell Migration and Invasion. Cancer Research, 2008, 68, 8210-8220.	0.4	228
62	Autocrine motility factor receptor: a clinical review. Expert Review of Anticancer Therapy, 2008, 8, 207-217.	1.1	51
63	Localized Rho GTPase Activation Regulates RNA Dynamics and Compartmentalization in Tumor Cell Protrusions. Journal of Biological Chemistry, 2008, 283, 34785-34795.	1.6	23
64	Raft-Dependent Endocytosis of Autocrine Motility Factor/Phosphoglucose Isomerase: A Potential Drug Delivery Route for Tumor Cells. PLoS ONE, 2008, 3, e3597.	1.1	18
65	Reversible interactions between smooth domains of the endoplasmic reticulum and mitochondria are regulated by physiological cytosolic Ca2+ levels. Journal of Cell Science, 2007, 120, 3553-3564.	1.2	64
66	Raft-dependent Endocytosis of Autocrine Motility Factor Is Phosphatidylinositol 3-Kinase-dependent in Breast Carcinoma Cells. Journal of Biological Chemistry, 2007, 282, 29305-29313.	1.6	43
67	Plasma membrane domain organization regulates EGFR signaling in tumor cells. Journal of Cell Biology, 2007, 179, 341-356.	2.3	231
68	Regulation of raftâ€dependent endocytosis. Journal of Cellular and Molecular Medicine, 2007, 11, 644-653.	1.6	243
69	Rho/ROCK-dependent pseudopodial protrusion and cellular blebbing are regulated by p38 MAPK in tumour cells exhibiting autocrine c-Met activation. Biology of the Cell, 2006, 98, 337-351.	0.7	25
70	Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes (Review). Molecular Membrane Biology, 2006, 23, 5-16.	2.0	79
71	Galectin Binding to Mgat5-Modified N-Glycans Regulates Fibronectin Matrix Remodeling in Tumor Cells. Molecular and Cellular Biology, 2006, 26, 3181-3193.	1.1	185
72	Interaction of the smooth endoplasmic reticulum and mitochondria. Biochemical Society Transactions, 2006, 34, 370-373.	1.6	50

#	Article	IF	Citations
73	The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. Journal of Cell Science, 2005, 118, 1991-2003.	1.2	86
74	Tumor Cell Pseudopodial Protrusions. Journal of Biological Chemistry, 2005, 280, 30564-30573.	1.6	67
75	Ganglioside GM1 levels are a determinant of the extent of caveolae/raft-dependent endocytosis of cholera toxin to the Golgi apparatus. Journal of Cell Science, 2004, 117, 1421-1430.	1.2	90
76	Regulation of Cytokine Receptors by Golgi N-Glycan Processing and Endocytosis. Science, 2004, 306, 120-124.	6.0	641
77	The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2004, 320, 1316-1322.	1.0	22
78	Synaptojanin 2 Functions at an Early Step of Clathrin-Mediated Endocytosis. Current Biology, 2003, 13, 659-663.	1.8	67
79	The enzymatic activity of phosphoglucose isomerase is not required for its cytokine function. FEBS Letters, 2003, 534, 49-53.	1.3	26
80	Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. Journal of Cell Science, 2003, 116, 1059-1071.	1.2	184
81	Caveolae/raft-dependent endocytosis. Journal of Cell Biology, 2003, 161, 673-677.	2.3	673
82	Overexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts. Cancer Research, 2003, 63, 242-9.	0.4	65
83	Autocrine Activation of the Hepatocyte Growth Factor Receptor/Met Tyrosine Kinase Induces Tumor Cell Motility by Regulating Pseudopodial Protrusion. Journal of Biological Chemistry, 2002, 277, 48342-48350.	1.6	22
84	Caveolin-1 Is a Negative Regulator of Caveolae-mediated Endocytosis to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2002, 277, 3371-3379.	1.6	205
85	Species specificity of the cytokine function of phosphoglucose isomerase. FEBS Letters, 2002, 525, 151-155.	1.3	23
86	A Viral Phospholipase A2 Is Required for Parvovirus Infectivity. Developmental Cell, 2001, 1, 291-302.	3.1	440
87	Expression of the AMF/neuroleukin receptor in developing and adult brain cerebellum. Journal of Neuroscience Research, 2000, 60, 602-612.	1.3	24
88	Calcium Regulates the Association between Mitochondria and a Smooth Subdomain of the Endoplasmic Reticulum. Journal of Cell Biology, 2000, 150, 1489-1498.	2.3	160
89	A Novel Murine Staufen Isoform Modulates the RNA Content of Staufen Complexes. Molecular and Cellular Biology, 2000, 20, 5592-5601.	1.1	33
90	Biogenesis of Multilamellar Bodies via Autophagy. Molecular Biology of the Cell, 2000, 11, 255-268.	0.9	157

#	Article	IF	CITATIONS
91	Purification and Characterization of \hat{l}^2 -Actin-Rich Tumor Cell Pseudopodia: Role of Glycolysis. Experimental Cell Research, 2000, 258, 171-183.	1.2	50
92	Clathrin-mediated endocytosis and recycling of autocrine motility factor receptor to fibronectin fibrils is a limiting factor for NIH-3T3 cell motility. Journal of Cell Science, 2000, 113, 3227-3240.	1.2	29
93	Mammalian Staufen Is a Double-Stranded-RNA- and Tubulin-Binding Protein Which Localizes to the Rough Endoplasmic Reticulum. Molecular and Cellular Biology, 1999, 19, 2220-2230.	1.1	227
94	The polarization of the motile cell. Journal of Cell Science, 1999, 112, 1803-1811.	1.2	143
95	Localization of Autocrine Motility Factor Receptor to Caveolae and Clathrin-independent Internalization of Its Ligand to Smooth Endoplasmic Reticulum. Molecular Biology of the Cell, 1998, 9, 1773-1786.	0.9	107
96	The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology, 1998, 8, 947-953.	1.3	39
97	Inverse Relation of Autocrine Motility Factor Receptor and E-Cadherin Expression following MDCK Epithelial Cell Transformation. Biochemical and Biophysical Research Communications, 1996, 219, 122-127.	1.0	18
98	Plasticity in epithelial cell phenotype: modulation by expression of different cadherin cell adhesion molecules Journal of Cell Biology, 1995, 129, 507-519.	2.3	126
99	Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V Journal of Cell Biology, 1995, 130, 383-392.	2.3	248
100	Autocrine motility factor receptor is a marker for a distinct membranous tubular organelle Journal of Cell Biology, 1995, 129, 459-471.	2.3	44
101	Autocrine motility factor and its receptor: Role in cell locomotion and metastasis. Cancer and Metastasis Reviews, 1992, 11, 5-20.	2.7	97
102	An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes Journal of Cell Biology, 1991, 115, 1573-1584.	2.3	117
103	Cell shape modulation alters glycosylation of a metastatic melanoma cell-surface antigen. International Journal of Cancer, 1987, 40, 396-402.	2.3	58
104	The PhosphooCaveolinn1 Scaffolding Domain Dampens Force Fluctuations in Focal Adhesions to Drive Cancer Cell Migration. SSRN Electronic Journal, 0, , .	0.4	0