Haijun Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/271543/haijun-zhang-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73	6,884	26	74
papers	citations	h-index	g-index
74 ext. papers	7,818 ext. citations	8.8 avg, IF	5.68 L-index

#	Paper	IF	Citations
73	Accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in human breast milk from a seaside city of North China <i>Environmental Pollution</i> , 2022 , 297, 118794	9.3	O
72	FT-ICR mass spectrometry for molecular characterization of water-insoluble organic compounds in winter atmospheric fine particulate matters <i>Journal of Environmental Sciences</i> , 2022 , 111, 51-60	6.4	1
71	Insights into the hepatotoxicity of pyrene and 1-chloropyrene using an integrated approach of metabolomics and transcriptomics <i>Science of the Total Environment</i> , 2022 , 829, 154637	10.2	
70	Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets <i>Science of the Total Environment</i> , 2022 , 154597	10.2	1
69	Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation <i>Science of the Total Environment</i> , 2022 , 154119	10.2	O
68	Transcriptomics and metabolomics analyses provide insights into the difference in toxicity of benzo[a]pyrene and 6-chlorobenzo[a]pyrene to human hepatic cells <i>Science of the Total Environment</i> , 2021 , 812, 152242	10.2	1
67	Molecular chemodiversity of water-soluble organic matter in atmospheric particulate matter and their associations with atmospheric conditions. <i>Science of the Total Environment</i> , 2021 , 809, 151171	10.2	O
66	Exposure to short-chain chlorinated paraffins inhibited PPAREmediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. <i>Science of the Total Environment</i> , 2021 , 772, 144957	,10.2	4
65	Accumulation characteristics and estimated dietary intakes of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in plant-origin foodstuffs from Chinese markets. <i>Science of the Total Environment</i> , 2021 , 775, 145830	10.2	7
64	Low-temperature catalytic degradation of chlorinated aromatic hydrocarbons over bimetallic Ce-Zr/UiO-66 catalysts. <i>Chemical Engineering Journal</i> , 2021 , 414, 128782	14.7	7
63	The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter. <i>Environmental Pollution</i> , 2021 , 272, 115922	9.3	7
62	Effect of short-chain chlorinated paraffins on metabolic profiling of male SD rats. <i>Science of the Total Environment</i> , 2021 , 750, 141404	10.2	2
61	Inhibition Effect and Mechanism of Thiourea on Electrophilic Chlorination of Aromatics in Combustion Flue Gas. <i>Environmental Science & Environmental </i>	10.3	2
60	Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. <i>Environmental Science & Environmental Science & Envi</i>	10.3	1
59	Effect of urea on chlorinated aromatics formation mediated by copper and iron species in combustion flue gas. <i>Chemosphere</i> , 2021 , 280, 130963	8.4	
58	Internal exposure of Chinese children from a typical coastal city to bisphenols and possible association with thyroid hormone levels. <i>Environment International</i> , 2021 , 156, 106759	12.9	2
57	Spraying polyacrylamide solution to improve the removal of particle-phase dioxins by bag filter in a full-scale municipal solid waste incineration system. <i>Chemosphere</i> , 2021 , 285, 131392	8.4	2

56	Suppressing the formation of chlorinated aromatics by inhibitor sodium thiocyanate in solid waste incineration process. <i>Science of the Total Environment</i> , 2021 , 798, 149154	10.2	1
55	Effects of harvesting and extraction methods on metabolite recovery from adherently growing mammalian cells. <i>Analytical Methods</i> , 2020 , 12, 2491-2498	3.2	3
54	Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system. <i>Science of the Total Environment</i> , 2020 , 735, 139134	10.2	22
53	Synergistic effect of mixed Cu and Fe oxides and chlorides on electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran. <i>Science of the Total Environment</i> , 2020 , 721, 137563	10.2	6
52	Mass balance and elimination mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during the kraft pulping process. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122819	12.8	3
51	Mechanistic aspects of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation from chlorine bleaching of non-wood pulp. <i>Journal of Hazardous Materials</i> , 2020 , 386, 121652	12.8	4
50	Electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran over composite copper and iron chlorides and oxides in combustion flue gas. <i>Chemosphere</i> , 2020 , 256, 127065	8.4	3
49	Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. <i>Environmental Pollution</i> , 2020 , 273, 116344	9.3	7
48	Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor [[PPAR]] <i>Ecotoxicology and Environmental Safety</i> , 2019 , 181, 164-171	7	16
47	Comparing the disrupting effects of short-, medium- and long-chain chlorinated Paraffins on cell viability and metabolism. <i>Science of the Total Environment</i> , 2019 , 685, 297-307	10.2	25
46	Levels and fingerprints of chlorinated aromatic hydrocarbons in fly ashes from the typical industrial thermal processes: Implication for the co-formation mechanism. <i>Chemosphere</i> , 2019 , 224, 298-305	8.4	12
45	Electrophilic Chlorination of Naphthalene in Combustion Flue Gas. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 5741-5749	10.3	15
44	Identification and evaluation of chlorinated nonane paraffins in the environment: A persistent organic pollutant candidate for the Stockholm Convention?. <i>Journal of Hazardous Materials</i> , 2019 , 371, 449-455	12.8	20
43	Removal kinetics of petroleum hydrocarbons from low-permeable soil by sand mixing and thermal enhancement of soil vapor extraction. <i>Chemosphere</i> , 2019 , 236, 124319	8.4	11
42	Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM) from a coastal city of northeast China. <i>Science of the Total Environment</i> , 2019 , 689, 312-32	.1 ^{10.2}	14
41	Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. <i>Environment International</i> , 2019 , 133, 105231	12.9	29
40	Release and Transformation of BTBPE During the Thermal Treatment of Flame Retardant ABS Plastics. <i>Environmental Science & Environmental Science & Env</i>	10.3	28
39	Validation of a HRGC-ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma. <i>Journal of Environmental Sciences</i> , 2019 , 75, 289-295	6.4	18

38	Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China. <i>Science of the Total Environment</i> , 2018 , 625, 1486-1493	10.2	31
37	A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs). <i>Environmental Pollution</i> , 2018 , 234, 572-580	9.3	36
36	Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats. <i>Science of the Total Environment</i> , 2018 , 625, 657-666	10.2	30
35	Hazy Weather-Induced Variation in Environmental Behavior of PCDD/Fs and PBDEs in Winter Atmosphere of A North China Megacity. <i>Environmental Science & Environmental Science &</i>	10.3	26
34	Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China. <i>Environmental Pollution</i> , 2018 , 242, 1527-1534	9.3	21
33	Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure. <i>Science of the Total Environment</i> , 2018 , 622-623, 214-221	10.2	38
32	Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes. <i>Analytical Methods</i> , 2017 , 9, 5198-5203	3.2	13
31	Release and Gas-Particle Partitioning Behaviors of Short-Chain Chlorinated Paraffins (SCCPs) During the Thermal Treatment of Polyvinyl Chloride Flooring. <i>Environmental Science & Environmental Scien</i>	10.3	25
30	Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves. <i>Environmental Science & Environmental Science & </i>	10.3	37
29	Occurrence and bioaccumulation of polybrominated diphenyl ethers in sediments and paddy ecosystems of Liaohe River Basin, northeast China. <i>Journal of Environmental Sciences</i> , 2016 , 43, 250-256	5 ^{6.} 4	13
28	Occurrence, distribution and source apportionment of polychlorinated naphthalenes (PCNs) in sediments and soils from the Liaohe River Basin, China. <i>Environmental Pollution</i> , 2016 , 211, 226-32	9.3	14
27	New Insights into the Cytotoxic Mechanism of Hexabromocyclododecane from a Metabolomic Approach. <i>Environmental Science & Environmental Science & Envi</i>	10.3	34
26	Toxicokinetics of short-chain chlorinated paraffins in Sprague-Dawley rats following single oral administration. <i>Chemosphere</i> , 2016 , 145, 106-11	8.4	30
25	Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. <i>Environmental Pollution</i> , 2016 , 216, 893-901	9.3	24
24	Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography-Mass Spectrometry. <i>Environmental Science & Environmental Scienc</i>	10.3	27
23	High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples. <i>Journal of Chromatography A</i> , 2016 , 1448, 1-8	4.5	16
22	Influence of water on the homogeneous gas-phase formation mechanism of polyhalogenated dioxins/furans from chlorinated/brominated phenols as precursors. <i>Chemosphere</i> , 2015 , 137, 142-8	8.4	13
21	Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells. <i>Environmental Science & Environmental Science & Environm</i>	10.3	68

(2009-2014)

20	Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China. <i>Environmental Science & Environmental Science </i>	10.3	126
19	Kinetics of PCDD/Fs formation from non-wood pulp bleaching with chlorine. <i>Environmental Science & Environmental Science</i>	10.3	16
18	Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica. <i>Atmospheric Environment</i> , 2014 , 90, 10-15	5.3	65
17	Salt-assisted dispersive liquid-liquid microextraction coupled with programmed temperature vaporization gas chromatography-mass spectrometry for the determination of haloacetonitriles in drinking water. <i>Journal of Chromatography A</i> , 2014 , 1358, 14-9	4.5	35
16	Chemical Composition of Nanoparticles Released from Thermal Cutting of Polystyrene Foams and the Associated Isomerization of Hexabromocyclododecane (HBCD) Diastereomers. <i>Aerosol and Air Quality Research</i> , 2014 , 14, 1114-1120	4.6	8
15	Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China. <i>Marine Pollution Bulletin</i> , 2014 , 79, 299-304	6.7	46
14	Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. <i>Science Bulletin</i> , 2013 , 58, 1751-1759		14
13	Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams. <i>Environmental Science & Environmental Science & Environme</i>	10.3	74
12	Formation and emission of PCDD/Fs in Chinese non-wood pulp and paper mills. <i>Environmental Science & Environmental Science & E</i>	10.3	27
11	Using Soil Available P and Activities of Soil Dehydrogenase and Phosphatase as Indicators for Biodegradation of Organophosphorus Pesticide Methamidophos and Glyphosate. <i>Soil and Sediment Contamination</i> , 2011 , 20, 688-701	3.2	8
10	Retention of nonionic organic compounds on thermally treated soils. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3677-82	10.3	2
9	Model Hamiltonian for topological insulators. <i>Physical Review B</i> , 2010 , 82,	3.3	563
8	PCDD/Fs and PCBs in sediments of the Liaohe River, China: levels, distribution, and possible sources. <i>Chemosphere</i> , 2010 , 79, 754-62	8.4	69
7	Oscillatory crossover from two-dimensional to three-dimensional topological insulators. <i>Physical Review B</i> , 2010 , 81,	3.3	389
6	Glucosinolate Profiles of Arabidopsis thaliana in Response to Cadmium Exposure. <i>Water, Air, and Soil Pollution</i> , 2009 , 200, 109-117	2.6	14
5	Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. <i>Nature Physics</i> , 2009 , 5, 438-442	16.2	4411
4	Emissions of PCDD/Fs from municipal solid waste incinerators in China. <i>Chemosphere</i> , 2009 , 75, 1153-8	8.4	126
3	Uptake by roots and translocation to shoots of polychlorinated dibenzo-p-dioxins and dibenzofurans in typical crop plants. <i>Chemosphere</i> , 2009 , 76, 740-6	8.4	51

A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. *Journal of Materials Chemistry*, **2009**, 19, 4707

42

Polychlorinated dibenzo-p-dioxins and dibenzofurans in soils and sediments from Daliao River Basin, China. *Chemosphere*, **2008**, 73, 1640-8

8.4 27