Alicia Paini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2715140/publications.pdf Version: 2024-02-01

Διιςία Ραινί

#	Article	IF	CITATIONS
1	In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicology in Vitro, 2018, 47, 213-227.	2.4	162
2	Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Critical Reviews in Toxicology, 2019, 49, 174-189.	3.9	135
3	How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicological Sciences, 2017, 155, 326-336.	3.1	125
4	A Review of <i>In Silico</i> Tools as Alternatives to Animal Testing: Principles, Resources and Applications. ATLA Alternatives To Laboratory Animals, 2020, 48, 146-172.	1.0	100
5	Putative adverse outcome pathways relevant to neurotoxicity. Critical Reviews in Toxicology, 2015, 45, 83-91.	3.9	92
6	An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology, 2018, 92, 41-82.	4.2	77
7	Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. Computational Toxicology, 2017, 4, 31-44.	3.3	75
8	Use of Physiologically Based Biokinetic (PBBK) Modeling to Study Estragole Bioactivation and Detoxification in Humans as Compared with Male Rats. Toxicological Sciences, 2009, 110, 255-269.	3.1	66
9	Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicology in Vitro, 2018, 52, 131-145.	2.4	66
10	Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicology in Vitro, 2021, 73, 105133.	2.4	58
11	A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Toxicology and Applied Pharmacology, 2010, 245, 57-66.	2.8	57
12	Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies. Archives of Toxicology, 2021, 95, 1867-1897.	4.2	55
13	Identification of nevadensin as an important herb-based constituent inhibiting estragole bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Toxicology and Applied Pharmacology, 2010, 245, 179-190.	2.8	51
14	Representing the Process of Inflammation as Key Events in Adverse Outcome Pathways. Toxicological Sciences, 2018, 163, 346-352.	3.1	49
15	Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environment International, 2021, 146, 106257.	10.0	48
16	In silico resources to assist in the development and evaluation of physiologically-based kinetic models. Computational Toxicology, 2019, 11, 33-49.	3.3	45
17	Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays. Mutagenesis, 2011, 26, 605-618.	2.6	42
18	Investigating the state of physiologically based kinetic modelling practices and challenges associated with gaining regulatory acceptance of model applications. Regulatory Toxicology and Pharmacology, 2017, 90, 104-115.	2.7	42

Alicia Paini

#	Article	IF	CITATIONS
19	Improving substance information in USEtox [®] , part 1: Discussion on data and approaches for estimating freshwater ecotoxicity effect factors. Environmental Toxicology and Chemistry, 2017, 36, 3450-3462.	4.3	40
20	Improving substance information in USEtox ^{\hat{A}^{\otimes}} , part 2: Data for estimating fate and ecosystem exposure factors. Environmental Toxicology and Chemistry, 2017, 36, 3463-3470.	4.3	36
21	IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics, 2022, 10, 232.	3.7	35
22	In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling. Mutagenesis, 2012, 27, 653-663.	2.6	34
23	PBPK model reporting template for chemical risk assessment applications. Regulatory Toxicology and Pharmacology, 2020, 115, 104691.	2.7	33
24	Finding synergies for 3Rs – Toxicokinetics and read-across: Report from an EPAA partners' Forum. Regulatory Toxicology and Pharmacology, 2018, 99, 5-21.	2.7	31
25	The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data – A case study with caffeine. Toxicology, 2017, 392, 119-129.	4.2	28
26	In vivo validation and physiologically based biokinetic modeling of the inhibition of SULT-mediated estragole DNA adduct formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Molecular Nutrition and Food Research, 2013, 57, 1969-1978.	3.3	27
27	Multiscale modelling approaches for assessing cosmetic ingredients safety. Toxicology, 2017, 392, 130-139.	4.2	26
28	Aggregate exposure pathways in support of risk assessment. Current Opinion in Toxicology, 2018, 9, 8-13.	5.0	25
29	Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. Environment International, 2020, 143, 105978.	10.0	24
30	New framework for a non-animal approach adequately assures the safety of cosmetic ingredients – A case study on caffeine. Regulatory Toxicology and Pharmacology, 2021, 123, 104931.	2.7	21
31	A Systematic Review of Published Physiologically-based Kinetic Models and an Assessment of their Chemical Space Coverage. ATLA Alternatives To Laboratory Animals, 2021, 49, 197-208.	1.0	20
32	Matrix Modulation of the Bioactivation of Estragole by Constituents of Different Alkenylbenzene-containing Herbs and Spices and Physiologically Based Biokinetic Modeling of Possible In Vivo Effects. Toxicological Sciences, 2012, 129, 174-187.	3.1	19
33	Inhibition of methyleugenol bioactivation by the herb-based constituent nevadensin and prediction of possible in vivo consequences using physiologically based kinetic modeling. Food and Chemical Toxicology, 2013, 59, 564-571.	3.6	19
34	Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling. Chemical Research in Toxicology, 2016, 29, 659-668.	3.3	19
35	Key read across framework components and biology based improvements. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 853, 503172.	1.7	19
36	Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reproductive Toxicology, 2021, 105, 101-119.	2.9	19

Alicia Paini

#	Article	IF	CITATIONS
37	Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. Environment International, 2019, 126, 659-671.	10.0	18
38	From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modelling. Toxicology in Vitro, 2017, 45, 241-248.	2.4	17
39	Towards a qAOP framework for predictive toxicology - Linking data to decisions. Computational Toxicology, 2022, 21, 100195.	3.3	17
40	Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures – A review. Computational Toxicology, 2019, 10, 158-168.	3.3	16
41	Assessment of the predictive capacity of a physiologically based kinetic model using a read-across approach. Computational Toxicology, 2021, 18, 100159.	3.3	16
42	Gaining acceptance in next generation PBK modelling approaches for regulatory assessments – An OECD international effort. Computational Toxicology, 2021, 18, 100163.	3.3	14
43	Capturing the applicability of in vitro-in silico membrane transporter data in chemical risk assessment and biomedical research. Science of the Total Environment, 2018, 645, 97-108.	8.0	13
44	Malabaricone C-containing mace extract inhibits safrole bioactivation and DNA adduct formation both in vitro and in vivo. Food and Chemical Toxicology, 2014, 66, 373-384.	3.6	12
45	The virtual cell based assay: Current status and future perspectives. Toxicology in Vitro, 2017, 45, 258-267.	2.4	10
46	Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment. Regulatory Toxicology and Pharmacology, 2021, 127, 105070.	2.7	10
47	Translatability and transferability of in silico models: Context of use switching to predict the effects of environmental chemicals on the immune system. Computational and Structural Biotechnology Journal, 2022, 20, 1764-1777.	4.1	10
48	Automated workflows for modelling chemical fate, kinetics and toxicity. Toxicology in Vitro, 2017, 45, 249-257.	2.4	9
49	Virtual Cell Based Assay simulations of intra-mitochondrial concentrations in hepatocytes and cardiomyocytes. Toxicology in Vitro, 2017, 45, 222-232.	2.4	7
50	JRC Summer School on Non-animal Approaches in Science, May 2021. ATLA Alternatives To Laboratory Animals, 2021, 49, 235-300.	1.0	0