Pim J French

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2715038/pim-j-french-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 99
 7,150
 40
 84

 papers
 citations
 h-index
 g-index

 118
 9,406
 8.1
 5.32

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
99	MGMT promoter methylation determined by the MGMT-STP27 algorithm is not predictive for outcome to temozolomide in IDH-mutant anaplastic astrocytomas <i>Neuro-Oncology</i> , 2022 ,	1	1
98	Landscape of driver gene events, biomarkers, and druggable targets identified by whole-genome sequencing of glioblastomas <i>Neuro-Oncology Advances</i> , 2022 , 4, vdab177	0.9	0
97	Human branching cholangiocyte organoids recapitulate functional bile duct formation <i>Cell Stem Cell</i> , 2022 , 29, 776-794.e13	18	O
96	Continued androgen signalling inhibition improves cabazitaxel efficacy in prostate cancer. <i>EBioMedicine</i> , 2021 , 73, 103681	8.8	3
95	TMOD-19. FROM PATIENT TO PETRI DISH: INCREASING PATIENT-DERIVED GLIOBLASTOMA CULTURE EFFICIENCIES TO 95%. <i>Neuro-Oncology</i> , 2021 , 23, vi219-vi219	1	
94	Non-IDH1-R132H IDH1/2 mutations are associated with increased DNA methylation and improved survival in astrocytomas, compared to IDH1-R132H mutations. <i>Acta Neuropathologica</i> , 2021 , 141, 945-9	5 7 4·3	9
93	The transcriptional landscape of Shh medulloblastoma. <i>Nature Communications</i> , 2021 , 12, 1749	17.4	7
92	Prognostic significance of genome-wide DNA methylation profiles within the randomized, phase 3, EORTC CATNON trial on non-1p/19q deleted anaplastic glioma. <i>Neuro-Oncology</i> , 2021 , 23, 1547-1559	1	7
91	SMARCAD1-mediated active replication fork stability maintains genome integrity. <i>Science Advances</i> , 2021 , 7,	14.3	10
90	Essential role for Gata2 in modulating lineage output from hematopoietic stem cells in zebrafish. <i>Blood Advances</i> , 2021 , 5, 2687-2700	7.8	5
89	Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. <i>Lancet Oncology, The</i> , 2021 , 22, 813-823	21.7	24
88	EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. <i>Nature Reviews Clinical Oncology</i> , 2021 , 18, 170-186	19.4	204
87	Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. <i>Neuro-Oncology Advances</i> , 2021 , 3, vdab103	0.9	2
86	The Erasmus Glioma Database (EGD): Structural MRI scans, WHO 2016 subtypes, and segmentations of 774 patients with glioma. <i>Data in Brief</i> , 2021 , 37, 107191	1.2	1
85	Subgroup and subtype-specific outcomes in adult medulloblastoma. <i>Acta Neuropathologica</i> , 2021 , 142, 859-871	14.3	2
84	Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data. <i>GigaScience</i> , 2021 , 10,	7.6	2
83	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. <i>Cell Reports Medicine</i> , 2020 , 1,	18	11

(2019-2020)

82	Deregulated microRNAs in neurofibromatosis type 1 derived malignant peripheral nerve sheath tumors. <i>Scientific Reports</i> , 2020 , 10, 2927	4.9	6
81	Immunotherapy in Glioblastoma: Current Shortcomings and Future Perspectives. <i>Cancers</i> , 2020 , 12,	6.6	36
80	Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. <i>Cancers</i> , 2020 , 13,	6.6	33
79	Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. <i>Neuro-Oncology</i> , 2020 , 22, 515-523	1	58
78	Molecular Evolution of Wild-Type Glioblastomas Treated With Standard of Care Affects Survival and Design of Precision Medicine Trials: A Report From the EORTC 1542 Study. <i>Journal of Clinical Oncology</i> , 2020 , 38, 81-99	2.2	43
77	EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand. <i>Neuro-Oncology Advances</i> , 2020 , 2, vdz051	0.9	6
76	INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. <i>Neuro-Oncology</i> , 2020 , 22, 684	1 - 693	62
75	Beyond the Influence of Mutations: Exploring Epigenetic Vulnerabilities in Chondrosarcoma. <i>Cancers</i> , 2020 , 12,	6.6	6
74	Mutation and drug-specific intracellular accumulation of EGFR predict clinical responses to tyrosine kinase inhibitors. <i>EBioMedicine</i> , 2020 , 56, 102796	8.8	1
73	Predicting the 1p/19q Codeletion Status of Presumed Low-Grade Glioma with an Externally Validated Machine Learning Algorithm. <i>Clinical Cancer Research</i> , 2019 , 25, 7455-7462	12.9	40
72	Defining EGFR amplification status for clinical trial inclusion. <i>Neuro-Oncology</i> , 2019 , 21, 1263-1272	1	12
71	A bypass mechanism of abiraterone-resistant prostate cancer: Accumulating CYP17A1 substrates activate androgen receptor signaling. <i>Prostate</i> , 2019 , 79, 937-948	4.2	7
70	Differences in spatial distribution between WHO 2016 low-grade glioma molecular subgroups. <i>Neuro-Oncology Advances</i> , 2019 , 1, vdz001	0.9	4
69	Lack of B and T cell reactivity towards IDH1 in blood and tumor tissue from LGG patients. <i>Journal of Neuro-Oncology</i> , 2019 , 144, 79-87	4.8	9
68	Epidermal growth factor receptor (EGFR) amplification rates observed in screening patients for randomized trials in glioblastoma. <i>Journal of Neuro-Oncology</i> , 2019 , 144, 205-210	4.8	13
67	Low-grade glioma harbors few CD8 T cells, which is accompanied by decreased expression of chemo-attractants, not immunogenic antigens. <i>Scientific Reports</i> , 2019 , 9, 14643	4.9	21
66	ACTR-11. SECOND INTERIM AND 1ST MOLECULAR ANALYSIS OF THE EORTC RANDOMIZED PHASE III INTERGROUP CATNON TRIAL ON CONCURRENT AND ADJUVANT TEMOZOLOMIDE IN ANAPLASTIC GLIOMA WITHOUT 1p/19q CODELETION. <i>Neuro-Oncology</i> , 2019 , 21, vi14-vi14	1	4
65	Longitudinal molecular trajectories of diffuse glioma in adults. <i>Nature</i> , 2019 , 576, 112-120	50.4	151

64	Recurrent noncoding U1IsnRNA mutations drive cryptic splicing in SHH medulloblastoma. <i>Nature</i> , 2019 , 574, 707-711	50.4	78
63	Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. <i>Acta Neuropathologica</i> , 2018 , 136, 153-166	14.3	162
62	Prognostic relevance of mutations and copy number alterations assessed with targeted next generation sequencing in IDH mutant grade II glioma. <i>Journal of Neuro-Oncology</i> , 2018 , 139, 349-357	4.8	15
61	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. <i>Neuro-Oncology</i> , 2018 , 20, 873-884	1	63
60	Expression-based intrinsic glioma subtypes are prognostic in low-grade gliomas of the EORTC22033-26033 clinical trial. <i>European Journal of Cancer</i> , 2018 , 94, 168-178	7.5	19
59	TRiC controls transcription resumption after UV damage by regulating Cockayne syndrome protein A. <i>Nature Communications</i> , 2018 , 9, 1040	17.4	16
58	The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. <i>Neuro-Oncology</i> , 2018 , 20, 103-112	1	142
57	Heterogeneity within the PF-EPN-B ependymoma subgroup. <i>Acta Neuropathologica</i> , 2018 , 136, 227-237	14.3	52
56	Bevacizumab and temozolomide in patients with first recurrence of WHO grade II and III glioma, without 1p/19q co-deletion (TAVAREC): a randomised controlled phase 2 EORTC trial. <i>Lancet Oncology, The</i> , 2018 , 19, 1170-1179	21.7	49
55	IDH1-mutated transgenic zebrafish lines: An in-vivo model for drug screening and functional analysis. <i>PLoS ONE</i> , 2018 , 13, e0199737	3.7	2
54	Prognostic stratification of adult primary glioblastoma multiforme patients based on their tumor gene amplification profiles. <i>Oncotarget</i> , 2018 , 9, 28083-28102	3.3	4
53	ACTR-47. PATIENTS WITH EGFR AMPLIFICATION BUT WITHOUT EGFRVIII EXPRESSION HAVE IMPROVED BENEFIT COMPARED TO THOSE WITH EGFRVIII EXPRESSION IN SAMPLES OF THE INTELLANCE 2/EORTC 1410 RANDOMIZED PHASE II TRIAL. <i>Neuro-Oncology</i> , 2018 , 20, vi22-vi22	1	78
52	TMOD-25. MODELING IDH1-MUTATED GLIOMAS: GENERATION, CHARACTERIZATION AND THERAPEUTIC SENSITIVITIES OF SEVEN PATIENT-DERIVED IDH1-MUTANT GLIOMA CELL LINES. <i>Neuro-Oncology</i> , 2018 , 20, vi274-vi274	1	78
51	IMMU-62. LOW-GRADE GLIOMA EXCLUDE CD8 T CELLS, WHICH IS ACCOMPANIED BY LOW EXPRESSION OF CHEMO-ATTRACTANTS, NOT IMMUNOGENIC ANTIGENS. <i>Neuro-Oncology</i> , 2018 , 20, vi135-vi135	1	78
50	PATH-42. EGFR-AMPLIFIED IDH-WILDTYPE GLIOBLASTOMAS SELDOM TRANSFORM INTO A HYPERMUTATED PHENOTYPE. <i>Neuro-Oncology</i> , 2018 , 20, vi168-vi168	1	78
49	Clinical evaluation of a dedicated next generation sequencing panel for routine glioma diagnostics. <i>Acta Neuropathologica Communications</i> , 2018 , 6, 126	7.3	19
48	ACTR-39. TWO-YEAR RESULTS OF THE INTELLANCE 2/EORTC TRIAL 1410 RANDOMIZED PHASE II STUDY ON DEPATUXM ALONE, DEPATUX-M COMBINED WITH TEMOZOLOMIDE (TMZ) AND EITHER TMZ OR LOMUSTINE IN RECURRENT EGFR AMPLIFIED GLIOBLASTOMA (NCT02343406.	1	1
47	Neuro-Oncology, 2018 , 20, vi20-vi20 DRES-05. MOLECULAR EVOLUTION OF DIFFUSE GLIOMAS AND THE GLIOMA LONGITUDINAL ANALYSIS CONSORTIUM. <i>Neuro-Oncology</i> , 2018 , 20, vi76-vi76	1	78

46	Finding the Right Way to Target EGFR in Glioblastomas; Lessons from Lung Adenocarcinomas. <i>Cancers</i> , 2018 , 10,	6.6	14
45	DRES-14. PROTEIN AGGREGATE FORMATION PREDICTS CLINICAL RESPONSES TO EGFR TKIs. <i>Neuro-Oncology</i> , 2018 , 20, vi78-vi78	1	78
44	European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. <i>Lancet Oncology, The</i> , 2017 , 18, e315-e329	21.7	599
43	Intertumoral Heterogeneity within Medulloblastoma Subgroups. <i>Cancer Cell</i> , 2017 , 31, 737-754.e6	24.3	511
42	Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. <i>Acta Neuropathologica</i> , 2017 , 134, 957-959	14.3	61
41	Unique intrahepatic transcriptomics profiles discriminate the clinical phases of a chronic HBV infection. <i>PLoS ONE</i> , 2017 , 12, e0179920	3.7	11
40	Evidence-based management of adult patients with diffuse glioma - AuthorsReply. <i>Lancet Oncology, The</i> , 2017 , 18, e430-e431	21.7	4
39	Final results of the EORTC Brain Tumor Group randomized phase II TAVAREC trial on temozolomide with or without bevacizumab in 1st recurrence grade II/III glioma without 1p/19q co-deletion Journal of Clinical Oncology, 2017, 35, 2009-2009	2.2	8
38	Molecular classification of anaplastic oligodendroglioma using next-generation sequencing: a report of the prospective randomized EORTC Brain Tumor Group 26951 phase III trial. <i>Neuro-Oncology</i> , 2016 , 18, 388-400	1	102
37	Identification of Patients with Recurrent Glioblastoma Who May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from the BELOB Trial. <i>Cancer Research</i> , 2016 , 76, 525-34	10.1	70
36	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. <i>Lancet Oncology, The</i> , 2016 , 17, 484-495	21.7	187
35	A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab. <i>Molecular Oncology</i> , 2016 , 10, 1296-304	7.9	17
34	Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. <i>Neuro-Oncology</i> , 2015 , 17, 935-41	1	98
33	Tumor-specific mutations in low-frequency genes affect their functional properties. <i>Journal of Neuro-Oncology</i> , 2015 , 122, 461-70	4.8	10
32	Mutation specific functions of EGFR result in a mutation-specific downstream pathway activation. <i>European Journal of Cancer</i> , 2015 , 51, 893-903	7.5	13
31	Evidence-Based Diagnostic Algorithm for Glioma: Analysis of the Results of Pathology Panel Review and Molecular Parameters of EORTC 26951 and 26882 Trials. <i>Journal of Clinical Oncology</i> , 2015 , 33, 194	3 ² -50	13
30	PI3 kinase mutations and mutational load as poor prognostic markers in diffuse glioma patients. <i>Acta Neuropathologica Communications</i> , 2015 , 3, 88	7.3	27
29	AT-34CONSTRUCTION OF AN INTEGRATED DIAGNOSTIC ALGORITHM CONSISTING OF CONSENSUS HISTOLOGIC AND MOLECULAR PARAMETERS OF TWO EORTC TRIALS ON ANAPLASTIC GLIOMA. Neuro-Oncology 2014 16 v16-v16	1	78

28	Raman spectroscopy can discriminate distinct glioma subtypes as defined by RNA expression profiling. <i>Journal of Raman Spectroscopy</i> , 2013 , 44, 1217-1221	2.3	5
27	Intrinsic molecular subtypes of glioma are prognostic and predict benefit from adjuvant procarbazine, lomustine, and vincristine chemotherapy in combination with other prognostic factors in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. <i>Journal of</i>	2.2	80
26	Molecular subtypes of glioma identified by genome-wide methylation profiling. <i>Genes Chromosomes and Cancer</i> , 2013 , 52, 665-74	5	21
25	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. <i>Acta Neuropathologica</i> , 2013 , 126, 917-29	14.3	115
24	Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. <i>Journal of Clinical Oncology</i> , 2013 , 31, 344-50	2.2	800
23	MGMT-STP27 methylation status as predictive marker for response to PCV in anaplastic Oligodendrogliomas and Oligoastrocytomas. A report from EORTC study 26951. <i>Clinical Cancer Research</i> , 2013 , 19, 5513-22	12.9	89
22	Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules. <i>Neuro-Oncology</i> , 2013 , 15, 1684-95	1	39
21	Structural and expression differences between the vasculature of pilocytic astrocytomas and glioblastomas. <i>Journal of Neuropathology and Experimental Neurology</i> , 2013 , 72, 1171-81	3.1	9
20	Mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 in tumors. <i>Advances in Anatomic Pathology</i> , 2013 , 20, 32-8	5.1	62
19	Subgroup-specific alternative splicing in medulloblastoma. <i>Acta Neuropathologica</i> , 2012 , 123, 485-499	14.3	23
18	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. <i>Nature</i> , 2012 , 488, 49-5	6 50.4	596
17	Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. <i>Nature Genetics</i> , 2011 , 43, 1256-61	36.3	392
16	Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma?. <i>Lancet Oncology, The</i> , 2011 , 12, 83-91	21.7	167
15	Molecular Subtypes of Gliomas 2011 , 25-29		
14	Genomic aberrations associated with outcome in anaplastic oligodendroglial tumors treated within the EORTC phase III trial 26951. <i>Journal of Neuro-Oncology</i> , 2011 , 103, 221-30	4.8	18
13	IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. <i>Annals of Neurology</i> , 2011 , 69, 455-63	9.4	114
12	Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. <i>Journal of Molecular Diagnostics</i> , 2011 , 13, 634-47	5.1	44
11	A hypermethylated phenotype is a better predictor of survival than MGMT methylation in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. <i>Clinical Cancer Research</i> , 2011 , 17, 7148-55	12.9	93

LIST OF PUBLICATIONS

10	Genetic alterations in glioma. <i>Cancers</i> , 2011 , 3, 1129-40	6.6	19
9	Absence of common somatic alterations in genes on 1p and 19q in oligodendrogliomas. <i>PLoS ONE</i> , 2011 , 6, e22000	3.7	11
8	Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1-SLC12A1 fusion gene. <i>Genes Chromosomes and Cancer</i> , 2010 , 49, 509-17	5	20
7	Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. <i>Human Mutation</i> , 2010 , 31, E1186-99	4.7	84
6	Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. <i>Cancer Research</i> , 2009 , 69, 9065-72	10.1	437
5	Exon expression arrays as a tool to identify new cancer genes. <i>PLoS ONE</i> , 2007 , 3, e3007	3.7	10
4	Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. <i>Cancer Research</i> , 2007 , 67, 5635-42	10.1	77
3	Gene expression profiles associated with treatment response in oligodendrogliomas. <i>Cancer Research</i> , 2005 , 65, 11335-44	10.1	95
2	Single cell transcriptome analysis reveals an essential role for Gata2b in hematopoietic lineage decisions in zebrafish		2
1	The epigenetic evolution of gliomas is determined by their IDH1 mutation status and treatment regime	en	1