Joop Schaye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2714844/publications.pdf Version: 2024-02-01

		2538	3903
409	38,887	96	177
papers	citations	h-index	g-index
411 all docs	411 docs citations	411 times ranked	9482 citing authors
			orting autilors

#	Article	IF	CITATIONS
1	The origin of the red-sequence galaxy population in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2022, 484, 4401-4412.	1.6	28
2	The MUSE Extremely Deep Field: Evidence for SFR-induced cores in dark-matter dominated galaxies $at < i > z < i > 3\% f$ 1. Astronomy and Astrophysics, 2022, 658, A76.	2.1	14
3	<scp>Sphenix</scp> : smoothed particle hydrodynamics for the next generation of galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2367-2389.	1.6	24
4	Observed structural parameters of EAGLE galaxies: reconciling the mass–size relation in simulations with local observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2544-2564.	1.6	29
5	How gas flows shape the stellar–halo mass relation in the <scp>eagle</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2948-2967.	1.6	12
6	Equivalent widths of Lyman <i>α</i> emitters in MUSE-Wide and MUSE-Deep. Astronomy and Astrophysics, 2022, 659, A183.	2.1	16
7	The MUSE eXtremely Deep Field: Individual detections of Ly <i>α</i> haloes around rest-frame UV-selected galaxies at <i>z</i> ≃ 2.9–4.4. Astronomy and Astrophysics, 2022, 660, A44.	2.1	11
8	Baryonic mass budgets for haloes in the <scp>eagle</scp> simulation, including ejected and prevented gas. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2600-2609.	1.6	9
9	The importance of the way in which supernova energy is distributed around young stellar populations in simulations of galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 249-264.	1.6	12
10	The MUSE eXtremely deep field: first panoramic view of an Mg†l emitting intragroup medium. Astronomy and Astrophysics, 2022, 663, A11.	2.1	11
11	The importance of black hole repositioning for galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 167-184.	1.6	17
12	The warm-hot circumgalactic medium around EAGLE-simulation galaxies and its detection prospects with X-ray-line emission. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5214-5237.	1.6	12
13	Why are we still using 3D masses for cluster cosmology?. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3383-3405.	1.6	6
14	Galaxy cluster photons alter the ionization state of the nearby warm–hot intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3162-3173.	1.6	4
15	Spurious heating of stellar motions in simulated galactic discs by dark matter halo particles. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5114-5137.	1.6	36
16	An EAGLE view of the missing baryons. Astronomy and Astrophysics, 2021, 646, A156.	2.1	31
17	Constraining the cosmic UV background at <i>z</i> > 3 with MUSE Lyman-α emission observations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 16-32.	1.6	10
18	The MUSE Extremely Deep Field: The cosmic web in emission at high redshift. Astronomy and Astrophysics, 2021, 647, A107.	2.1	45

#	Article	IF	CITATIONS
19	The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrometer. Experimental Astronomy, 2021, 51, 1013-1041.	1.6	5
20	SEAGLE – II. Constraints on feedback models in galaxy formation from massive early-type strong-lens galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3455-3477.	1.6	9
21	How baryons can significantly bias cluster count cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 505, 593-609.	1.6	23
22	Voyage through the hidden physics of the cosmic web. Experimental Astronomy, 2021, 51, 1043-1079.	1.6	9
23	Explaining the scatter in the galaxy mass–metallicity relation with gas flows. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4817-4828.	1.6	17
24	MusE GAs FLOw and Wind (MEGAFLOW) VI. A study of C <scp> iv</scp> and Mg <scp> ii</scp> absorbir gas surrounding [O <scp> ii</scp>] emitting galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1355-1363.	lg 1.6	12
25	The Cosmic Ultraviolet Baryon Survey (CUBS). II. Discovery of an H ₂ -bearing DLA in the Vicinity of an Early-type Galaxy at z = 0.576*. Astrophysical Journal, 2021, 913, 18.	1.6	9
26	The relationship between gas and galaxies at <i>z</i> Â< 1 using the Q0107 quasar triplet. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2574-2602.	1.6	8
27	The Cosmic Ultraviolet Baryon Survey (CUBS) – III. Physical properties and elemental abundances of Lyman-limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2021, 506, 877-902.	1.6	24
28	The cosmic dispersion measure in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5356-5369.	1.6	5
29	Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < <i>z</i> < 6.4. Astronomy and Astrophysics, 2021, 654, A80.	2.1	15
30	MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mg <scp>ii</scp> emission halo probed by a quasar sightline. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4294-4315.	1.6	35
31	The MUSE-Wide survey: Three-dimensional clustering analysis of Lyman- <i>α</i> emitters at 3.3 < <i>z</i> < 6. Astronomy and Astrophysics, 2021, 653, A136.	2.1	9
32	Metal-enriched halo gas across galaxy overdensities over the last 10 billion years. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4573-4599.	1.6	30
33	The Cosmic Ultraviolet Baryon Survey (CUBS) – IV. The complex multiphase circumgalactic medium as revealed by partial Lyman limit systems. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4359-4384.	1.6	14
34	Revealing the impact of quasar luminosity on giant Ly α nebulae. Monthly Notices of the Royal Astronomical Society, 2021, 502, 494-509.	1.6	18
35	The surprising accuracy of isothermal Jeans modelling of self-interacting dark matter density profiles. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4610-4634.	1.6	34
36	SEAGLE – III: Towards resolving the mismatch in the dark-matter fraction in early-type galaxies between simulations and observations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1245-1251.	1.6	3

#	Article	IF	CITATIONS
37	MUSEQuBES: characterizing the circumgalactic medium of redshift â‰^3.3 Ly α emitters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5612-5637.	1.6	17
38	How Identifying Circumgalactic Gas by Line-of-sight Velocity instead of the Location in 3D Space Affects O vi Measurements. Astrophysical Journal, 2021, 923, 137.	1.6	8
39	Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2424-2446.	1.6	89
40	The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4462-4480.	1.6	94
41	Radiative cooling rates, ion fractions, molecule abundances, and line emissivities including self-shielding and both local and metagalactic radiation fields. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4857-4883.	1.6	41
42	Constraining the intergalactic medium at z â‰^ 9.1 using LOFAR Epoch of Reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4728-4747.	1.6	69
43	The effect of gas accretion on the radial gas metallicity profile of simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2827-2843.	1.6	25
44	Galactic inflow and wind recycling rates in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4495-4516.	1.6	36
45	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	1.6	60
46	Galactic outflow rates in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3971-3997.	1.6	73
47	The dependence of the galaxy stellar-to-halo mass relation on galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3578-3593.	1.6	27
48	MUSEQuBES: calibrating the redshifts of Ly α emitters using stacked circumgalactic medium absorption profiles. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1013-1022.	1.6	44
49	The Cosmic Ultraviolet Baryon Survey (CUBS) – I. Overview and the diverse environments of Lyman limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2020, 497, 498-520.	1.6	37
50	The BAHAMAS project: effects of dynamical dark energy on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1576-1592.	1.6	10
51	The warm-hot circumgalactic medium around EAGLE-simulation galaxies and its detection prospects with X-ray and UV line absorption. Monthly Notices of the Royal Astronomical Society, 2020, 498, 574-598.	1.6	31
52	EAGLE and Illustris-TNG Predictions for Resolved eROSITA X-Ray Observations of the Circumgalactic Medium around Normal Galaxies. Astrophysical Journal Letters, 2020, 893, L24.	3.0	35
53	The high-redshift SFR–M* relation is sensitive to the employed star formation rate and stellar mass indicators: towards addressing the tension between observations and simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5592-5606.	1.6	30
54	Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z â‰^ 9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1662-1685.	1.6	185

#	Article	IF	CITATIONS
55	Measuring the temperature and profiles of Ly α absorbers. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2193-2207.	1.6	8
56	MusE GAs FLOw and Wind (MEGAFLOW) IV. A two sightline tomography of a galactic wind. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4576-4588.	1.6	17
57	Numerical convergence of hydrodynamical simulations of galaxy formation: the abundance and internal structure of galaxies and their cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2926-2951.	1.6	24
58	The impact of the observed baryon distribution in haloes on the total matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2285-2307.	1.6	44
59	Hot WHIM counterparts of FUV O†VI absorbers: Evidence in the line-of-sight towards quasar 3C 273. Astronomy and Astrophysics, 2020, 634, A106.	2.1	15
60	Elevated ionizing photon production efficiency in faint high-equivalent-width Lyman-α emitters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5120-5130.	1.6	45
61	Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2939-2952.	1.6	51
62	The bahamas project: effects of a running scalar spectral index on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 493, 676-697.	1.6	11
63	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2020, 638, A12.	2.1	34
64	Detection capabilities of the <i>Athena</i> X-IFU for the warm-hot intergalactic medium using gamma-ray burst X-ray afterglows. Astronomy and Astrophysics, 2020, 642, A24.	2.1	7
65	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2020, 641, A118.	2.1	28
66	The changing circumgalactic medium over the last 10ÂGyr – I. Physical and dynamical properties. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1476-1490.	1.6	9
67	Morphological and Rotation Structures of Circumgalactic Mg ii Gas in the EAGLE Simulation and the Dependence on Galaxy Properties. Astrophysical Journal, 2020, 904, 76.	1.6	19
68	The mean H <i>α</i> EW and Lyman-continuum photon production efficiency for faint <i>z</i> â‰^ 4â^'5 galaxies. Astronomy and Astrophysics, 2019, 627, A164.	2.1	41
69	Numerical convergence of simulations of galaxy formation: the abundance and internal structure of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3663-3684.	1.6	53
70	Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3646-3662.	1.6	72
71	On the Detectability of Visible-wavelength Line Emission from the Local Circumgalactic and Intergalactic Medium. Astrophysical Journal, 2019, 877, 4.	1.6	10
72	Resolved scaling relations and metallicity gradients on sub-kiloparsec scales at z â‰^ 1. Monthly Notices of the Royal Astronomical Society, 2019, 489, 224-240.	1.6	20

#	Article	IF	CITATIONS
73	Spectral variations of Lyman \$alpha\$ emission within strongly lensed sources observed with MUSE. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5022-5029.	1.6	29
74	MusE GAs FLOw and Wind (MEGAFLOW) – III. Galactic wind properties using background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4368-4381.	1.6	81
75	The abundance and physical properties of O vii and O viii X-ray absorption systems in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2947-2969.	1.6	33
76	The nature of submillimetre and highly star-forming galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2440-2454.	1.6	50
77	The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at zÂ= 20–25 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4271-4287.	1.6	77
78	Energy equipartition between stellar and dark matter particles in cosmological simulations results in spurious growth of galaxy sizes. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L123-L128.	1.2	57
79	Does radiative feedback make faint z > 6 galaxies look small?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4379-4392.	1.6	4
80	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4790-4804.	1.6	62
81	The signal of decaying dark matter with hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4071-4089.	1.6	9
82	The gas fractions of dark matter haloes hosting simulated â^¼L⋆ galaxies are governed by the feedback history of their black holes. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3783-3793.	1.6	66
83	Calibrated, cosmological hydrodynamical simulations with variable IMFs III: spatially resolved properties and evolution. Monthly Notices of the Royal Astronomical Society, 2019, 483, 985-1002.	1.6	13
84	Characterizing circumgalactic gas around massive ellipticals at <i>z</i> â‰^ 0.4 – III. The galactic environment of a chemically pristine Lyman limit absorber. Monthly Notices of the Royal Astronomical Society, 2019, 484, 431-441.	1.6	16
85	Disruption of satellite galaxies in simulated groups and clusters: the roles of accretion time, baryons, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2287-2311.	1.6	47
86	MusE GAs FLOw and Wind (MEGAFLOW) II. A study of gas accretion around <i>z</i> Ââ‰^Â1 star-forming galaxies with background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1961-1980.	1.6	86
87	Resolved galaxy scaling relations in the <scp>eagle</scp> simulation: star formation, metallicity, and stellar mass on kpc scales. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5715-5732.	1.6	39
88	The diverse evolutionary pathways of post-starburst galaxies. Nature Astronomy, 2019, 3, 440-446.	4.2	26
89	The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE. Monthly Notices of the Royal Astronomical Society, 2019, 485, 972-987.	1.6	59
90	The oxygen abundance gradients in the gas discs of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2208-2221.	1.6	49

#	Article	IF	CITATIONS
91	The star formation rate and stellar content contributions of morphological components in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 744-766.	1.6	47
92	The evolution of the baryon fraction in haloes as a cause of scatter in the galaxy stellar mass in the <scp>eagle</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3261-3273.	1.6	13
93	The large- and small-scale properties of the intergalactic gas in the Slug Ly α nebula revealed by MUSE He <scp>ii</scp> emission observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5188-5204.	1.6	78
94	The origin of scatter in the star formation rate–stellar mass relation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 915-932.	1.6	82
95	The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scalesâ€. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5009-5027.	1.6	80
96	The MUSE-Wide Survey: A determination of the Lyman <i>α</i> emitter luminosity function at 3 < <i>z</i> < 6. Astronomy and Astrophysics, 2019, 621, A107.	2.1	55
97	Galaxies with monstrous black holes in galaxy cluster environments. Monthly Notices of the Royal Astronomical Society, 2019, 485, 396-407.	1.6	14
98	The Physical Origins of the Identified and Still Missing Components of the Warm–Hot Intergalactic Medium: Insights from Deep Surveys in the Field of Blazar 1ES1553+113. Astrophysical Journal Letters, 2019, 884, L31.	3.0	26
99	An Evolving and Mass-dependent σsSFR–M _⋆ Relation for Galaxies. Astrophysical Journal, 2019, 879, 11.	1.6	24
100	Calibrated, cosmological hydrodynamical simulations with variable IMFs – II. Correlations between the IMF and global galaxy properties. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2515-2529.	1.6	9
101	Non-circular motions and the diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2019, 482, 821-847.	1.6	89
102	Faint end of the <i>z</i> â^¼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy and Astrophysics, 2019, 628, A3.	2.1	30
103	The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-mass Selected Galaxies Using MUSE Spectroscopy. Astrophysical Journal, 2019, 882, 140.	1.6	42
104	The formation of hot gaseous haloes around galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 538-559.	1.6	44
105	The innate origin of radial and vertical gradients in a simulated galaxy disc. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3648-3660.	1.6	26
106	The BAHAMAS project: the CMB–large-scale structure tension and the roles of massive neutrinos and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2999-3030.	1.6	113
107	The impact of dark energy on galaxy formation. What does the future of our Universe hold?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3744-3759.	1.6	10
108	The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L20-L24.	1.2	62

#	Article	IF	CITATIONS
109	The MUSE-Wide survey: a measurement of the Ly α emitting fraction among zÂ>Â3 galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 30-37.	1.6	32
110	The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 380-397.	1.6	9
111	Multiwavelength scaling relations in galaxy groups: a detailed comparison of GAMA and KiDS observations to BAHAMAS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3338-3355.	1.6	11
112	Properties and redshift evolution of star-forming galaxies with high [Oâ€⁻III]/[Oâ€⁻II] ratios with MUSE at 0.28Â<Â <i>z</i> Â<Â0.85. Astronomy and Astrophysics, 2018, 618, A40.	2.1	12
113	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27.	2.1	60
114	The multiphase circumgalactic medium traced by low metal ions in EAGLE zoom simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 835-859.	1.6	64
115	Recovering the systemic redshift of galaxies from their Lyman alpha line profile. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L60-L65.	1.2	84
116	The rapid growth phase of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3118-3128.	1.6	58
117	Galaxy and Quasar Fueling Caught in the Act from the Intragroup to the Interstellar Medium. Astrophysical Journal Letters, 2018, 869, L1.	3.0	39
118	MUSE Spectroscopic Identifications of Ultra-faint Emission Line Galaxies with M _{UV} Ââ^1⁄4Ââ^15 [*] . Astrophysical Journal Letters, 2018, 865, L1.	3.0	34
119	Star-forming galaxies are predicted to lie on a fundamental plane of mass, star formation rate, and α-enhancement. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L34-L39.	1.2	20
120	Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies. Nature, 2018, 562, 229-232.	13.7	108
121	The mean free path of hydrogen ionizing photons during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5123-5134.	1.6	14
122	The impact of feedback and the hot halo on the rates of gas accretion on to galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 255-269.	1.6	26
123	The origin of diverse α-element abundances in galaxy discs. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5072-5089.	1.6	77
124	The COS-AGN survey: revealing the nature of circumgalactic gas around hosts of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3890-3934.	1.6	18
125	Tidal dwarf galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 580-596.	1.6	38
126	Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3403-3422.	1.6	20

#	Article	IF	CITATIONS
127	First gas-phase metallicity gradients of 0.1 ≲ z ≲ 0.8 galaxies with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4293-4316.	1.6	47
128	Stacking the Cosmic Web in fluorescent Ly α emission with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3854-3869.	1.6	30
129	Dark Galaxy Candidates at Redshift â ⁻¹ ⁄43.5 Detected with MUSE*. Astrophysical Journal, 2018, 859, 53.	1.6	37
130	Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project. Astrophysical Journal, Supplement Series, 2018, 234, 20.	3.0	60
131	The connection between mass, environment, and slow rotation in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4327-4345.	1.6	65
132	Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3727-3743.	1.6	14
133	The three phases of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3994-4009.	1.6	68
134	SEAGLE – I. A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4108-4125.	1.6	24
135	Flickering AGN can explain the strong circumgalactic O <scp>vi</scp> observed by COS-Halos. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4740-4755.	1.6	72
136	Observations of the missing baryons in the warm–hot intergalactic medium. Nature, 2018, 558, 406-409.	13.7	194
137	The ATHENA x-ray integral field unit (X-IFU). , 2018, , .		120
138	Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR. Astrophysical Journal, 2017, 838, 65.	1.6	219
139	The properties of â€~dark' Ĵ›CDM haloes in the Local Group. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3913-3926.	1.6	44
140	The EAGLE simulations: atomic hydrogen associated with galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4204-4226.	1.6	130
141	Size matters: abundance matching, galaxy sizes, and the Tully–Fisher relation in EAGLE. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4736-4746.	1.6	43
142	The average structural evolution of massive galaxies can be reliably estimated using cumulative galaxy number densities. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L58-L62.	1.2	4
143	Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos. Physical Review Letters, 2017, 118, 161103.	2.9	95
144	The Extent of Chemically Enriched Gas around Star-forming Dwarf Galaxies. Astrophysical Journal Letters, 2017, 850, L10.	3.0	62

#	Article	IF	CITATIONS
145	Winds of change: reionization by starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2176-2188.	1.6	34
146	The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Monthly Notices of the Royal Astronomical Society, 2017, 465, 32-44.	1.6	214
147	The low-mass end of the baryonic Tully–Fisher relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2419-2428.	1.6	69
148	The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results. Monthly Notices of the Royal Astronomical Society, 2017, 466, 960-973.	1.6	54
149	Snap, crackle, pop: sub-grid supernova feedback in AMR simulations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 11-33.	1.6	66
150	The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3460-3471.	1.6	54
151	Optical colours and spectral indices of zÂ=Â0.1 eagle galaxies with the 3D dust radiative transfer code skirt. Monthly Notices of the Royal Astronomical Society, 2017, 470, 771-799.	1.6	152
152	MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64. Monthly Notices of the Royal Astronomical Society, 2017, 471, 267-278.	1.6	38
153	Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4285-4298.	1.6	50
154	Galaxy–galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2856-2870.	1.6	8
155	The Hydrangea simulations: galaxy formation in and around massive clusters. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4186-4208.	1.6	167
156	The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2017, 471, 227-242.	1.6	58
157	A comparison of observed and simulated absorption from H <scp>i</scp> , CÂ <scp>iv</scp> , and SiÂ <scp>iv</scp> around <i>z</i> â‰î 2 star-forming galaxies suggests redshift–space distortions are to inflows. Monthly Notices of the Royal Astronomical Society, 2017, 471, 690-705.	dues	62
158	On the galaxy–halo connection in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L11-L15.	1.2	29
159	Discovery of an H i-rich Gas Reservoir in the Outskirts of SZ-effect-selected Clusters. Astrophysical Journal Letters, 2017, 846, L8.	3.0	13
160	The MUSE-Wide survey: detection of a clustering signal from Lyman α emitters in the range 3Â<ÂzÂ<Â6 Monthly Notices of the Royal Astronomical Society, 2017, 471, 3186-3192.	1.6	11
161	The relation between galaxy morphology and colour in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L45-L49.	1.2	71
162	Galaxy metallicity scaling relations in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3354-3377.	1.6	98

#	Article	IF	CITATIONS
163	Size evolution of normal and compact galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 722-738.	1.6	170
164	The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2381-2396.	1.6	100
165	The link between galaxy and black hole growth in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3395-3407.	1.6	79
166	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A1.	2.1	236
167	The bahamas project: calibrated hydrodynamical simulations for large-scale structure cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2936-2965.	1.6	304
168	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A5.	2.1	54
169	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A2.	2.1	125
170	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A6.	2.1	72
171	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A8.	2.1	167
172	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A7.	2.1	28
173	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A10.	2.1	63
174	The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1088-1106.	1.6	178
175	Barred galaxies in the EAGLE cosmological hydrodynamical simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1054-1064.	1.6	66
176	The redshift evolution of massive galaxy clusters in the MACSIS simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 213-233.	1.6	96
177	The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3361-3378.	1.6	75
178	The origin of the enhanced metallicity of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 508-529.	1.6	36
179	A chronicle of galaxy mass assembly in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1659-1675.	1.6	145
180	The oldest and most metal-poor stars in the APOSTLE Local Group simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2212-2224.	1.6	67

#	Article	IF	CITATIONS
181	Metals in the circumgalactic medium are out of ionization equilibrium due to fluctuating active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1026-1044.	1.6	25
182	The MUSE-Wide survey: A first catalogue of 831 emission line galaxies. Astronomy and Astrophysics, 2017, 606, A12.	2.1	78
183	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A3.	2.1	29
184	BEING WISE II: REDUCING THE INFLUENCE OF STAR FORMATION HISTORY ON THE MASS-TO-LIGHT RATIO OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 198.	1.6	19
185	MUSE GAS FLOW AND WIND (MEGAFLOW). I. FIRST MUSE RESULTS ON BACKGROUND QUASARS*. Astrophysical Journal, 2016, 833, 39.	1.6	72
186	Extended Lyman <i>α</i> haloes around individual high-redshift galaxies revealed by MUSE. Astronomy and Astrophysics, 2016, 587, A98.	2.1	219
187	The origin of the α-enhancement of massive galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L102-L106.	1.2	44
188	Predictions of hydrodynamic simulations for direct dark matter detection. Journal of Physics: Conference Series, 2016, 718, 042007.	0.3	1
189	The Fermi GeV excess: challenges for the dark matter interpretation. Journal of Physics: Conference Series, 2016, 718, 042010.	0.3	1
190	Simulated Milky Way analogues: implications for dark matter direct searches. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	1.9	74
191	Implications of a variable IMF for the interpretation of observations of galaxy populations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2832-2846.	1.6	21
192	The Athena X-ray Integral Field Unit (X-IFU). Proceedings of SPIE, 2016, , .	0.8	88
193	The effects of metallicity, UV radiation and non-equilibrium chemistry in high-resolution simulations of galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 458, 270-292.	1.6	47
194	The apostle project: Local Group kinematic mass constraints and simulation candidate selection. Monthly Notices of the Royal Astronomical Society, 2016, 457, 844-856.	1.6	154
195	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	1.6	45
196	The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2632-2650.	1.6	84
197	Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4117-4129.	1.6	16
198	Music from the heavens – gravitational waves from supermassive black hole mergers in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 463, 870-885.	1.6	44

#	Article	IF	CITATIONS
199	A large difference in the progenitor masses of active and passive galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L1-L5.	1.2	12
200	POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A zÂâ^¼Â1 GALAXY–QUASAR PAIR TOWA SDSS J1422â^'0001*. Astrophysical Journal, 2016, 820, 121.	ARD 1.6	83
201	Observations of metals in the <i>z</i> â‰^ 3.5 intergalactic medium and comparison to the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2440-2464.	1.6	30
202	Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3457-3482.	1.6	85
203	Supermassive black holes in the EAGLE Universe. Revealing the observables of their growth. Monthly Notices of the Royal Astronomical Society, 2016, 462, 190-205.	1.6	84
204	The environmental dependence of H i in galaxies in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2630-2649.	1.6	77
205	Far-infrared and dust properties of present-day galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1057-1075.	1.6	95
206	UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT zÂâ^¼Â3.5 REVEALED WITH MUSE ^{â^—} . Astrophysical Journal, 2016, 831, 39.	1.6	201
207	Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1235-1258.	1.6	38
208	The chosen few: the low-mass haloes that host faint galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 85-97.	1.6	117
209	Bimodality of low-redshift circumgalactic O vi in non-equilibrium eagle zoom simulations. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2157-2179.	1.6	159
210	Subhalo abundance matching and assembly bias in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3100-3118.	1.6	122
211	The APOSTLE simulations: solutions to the Local Group's cosmic puzzles. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1931-1943.	1.6	453
212	Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 310-332.	1.6	85
213	On the connection between the metal-enriched intergalactic medium and galaxies: an O vi–galaxy cross-correlation study at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2016, 460, 590-616.	1.6	18
214	The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L11-L15.	1.2	75
215	The link between the assembly of the inner dark matter halo and the angular momentum evolution of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4466-4482.	1.6	86
216	The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues. Astronomy and Computing, 2016, 15, 72-89.	0.8	394

#	Article	IF	CITATIONS
217	The distribution of atomic hydrogen in eagle galaxies: morphologies, profiles, and H i holes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1115-1136.	1.6	117
218	The origin of compact galaxies with anomalously high black hole masses. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1147-1161.	1.6	33
219	Chemical evolution of giant molecular clouds in simulations of galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2297-2321.	1.6	15
220	It is not easy being green: the evolution of galaxy colour in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3925-3939.	1.6	104
221	Alignments between galaxies, satellite systems and haloes. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3772-3783.	1.6	47
222	nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	1.6	63
223	The brighter galaxies reionized the Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L94-L98.	1.2	66
224	Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4442-4451.	1.6	37
225	Deep MUSE observations in the HDFS. Astronomy and Astrophysics, 2016, 591, A49.	2.1	67
226	Bent by baryons: the low-mass galaxy-halo relation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2941-2947.	1.6	163
227	The impact of angular momentum on black hole accretion rates in simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1038-1057.	1.6	219
228	Colours and luminosities of <i>z</i> Â=Â0.1 galaxies in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2879-2896.	1.6	200
229	Molecular hydrogen abundances of galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3815-3837.	1.6	182
230	The eagle simulations of galaxy formation: the importance of the hydrodynamics scheme. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2277-2291.	1.6	192
231	Evolution of galaxy stellar masses and star formation rates in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4486-4504.	1.6	332
232	The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2034-2056.	1.6	124
233	The contributions of matter inside and outside of haloes to the matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2247-2257.	1.6	39
234	The global oxygen yield budget followed in hydrodynamic simulations. Proceedings of the International Astronomical Union, 2015, 11, 180-181.	0.0	0

#	Article	IF	CITATIONS
235	Simulating the 21Âcm forest detectable with LOFAR and SKA in the spectra of high- <i>z</i> GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 453, 101-105.	1.6	15
236	Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3328-3340.	1.6	66
237	The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1937-1961.	1.6	1,038
238	Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 34-58.	1.6	95
239	An assessment of the evidence from ATLAS3D for a variable initial mass function. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4091-4104.	1.6	9
240	Detection of hot, metal-enriched outflowing gas around z â‰^ 2.3 star-forming galaxies in the Keck Baryonic Structure Survey. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2067-2082.	1.6	38
241	The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 721-738.	1.6	108
242	Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1586-1605.	1.6	49
243	Simulated Milky Way analogues: implications for dark matter indirect searches. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 053-053.	1.9	49
244	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 521-554.	1.6	2,549
245	The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3650-3665.	1.6	302
246	The accretion history of dark matter haloes – III. A physical model for the concentration–mass relation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1217-1232.	1.6	168
247	The effect of baryons on the inner density profiles of rich clusters. Monthly Notices of the Royal Astronomical Society, 2015, 452, 343-355.	1.6	80
248	The accretion history of dark matter haloes – II. The connections with the mass power spectrum and the density profile. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1521-1537.	1.6	78
249	The broadening of Lyman-α forest absorption lines. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1465-1476.	1.6	31
250	The accretion history of dark matter haloes – I. The physical origin of the universal function. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1514-1520.	1.6	91
251	MUSE observations of the lensing cluster SMACSJ2031.8-4036: new constraints on the mass distribution in the cluster core. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 446, L16-L20.	1.2	31
252	Baryon effects on the internal structure of \hat{b} CDM haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1247-1267.	1.6	302

#	Article	lF	CITATIONS
253	Polarization leakage in epoch of reionization windows – I. Low Frequency Array observations of the 3C196 field. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3709-3727.	1.6	58
254	The MUSE 3D view of the <i>Hubble</i> Deep Field South. Astronomy and Astrophysics, 2015, 575, A75.	2.1	162
255	The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2997-3010.	1.6	82
256	The thermal Sunyaev–Zel'dovich effect power spectrum in light of Planck. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3645-3657.	1.6	65
257	Non-equilibrium chemistry and cooling in the diffuse interstellar medium - I. Optically thin regime. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3349-3369.	1.6	57
258	Metal-line absorption around zÂâ‰^Â2.4 star-forming galaxies in the Keck Baryonic Structure Surveyâ~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 794-822.	1.6	129
259	Towards a realistic population of simulated galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1270-1290.	1.6	261
260	The effect of recombination radiation on the temperature and ionization state of partially ionized gas. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2816-2830.	1.6	13
261	Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1113-1124.	1.6	54
262	Non-equilibrium chemistry and cooling in the diffuse interstellar medium – II. Shielded gas. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2780-2796.	1.6	50
263	The clustering of baryonic matter. II: halo model and hydrodynamic simulations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 028-028.	1.9	11
264	The impact of galaxy formation on the total mass, mass profile and abundance of haloes. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2641-2658.	1.6	137
265	Predictions for the relation between strong Hi absorbers and galaxies at redshift 3. Monthly Notices of the Royal Astronomical Society, 2014, 438, 529-547.	1.6	85
266	Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1043-1062.	1.6	118
267	Physical properties of simulated galaxy populations at $z = 2$ $\hat{a} \in$ "II. Effects of cosmology, reionization and ISM physics. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2955-2967.	1.6	27
268	Enriching the hot circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3005-3024.	1.6	43
269	The impact of feedback from galaxy formation on the Lyman $\hat{I}\pm$ transmitted flux. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1734-1746.	1.6	68
270	On the connection between the intergalactic medium and galaxies: the H i–galaxy cross-correlation at z ≲ 1â~ Monthly Notices of the Royal Astronomical Society, 2013, 437, 2017-2075.	1.6	46

#	Article	IF	CITATIONS
271	LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2615-2624.	1.6	23
272	The impact of different physical processes on the statistics of Lyman-limit and damped Lyman $\hat{l}\pm$ absorbers. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2689-2707.	1.6	40
273	Absorption signatures of warm-hot gas at low redshift: Ne viii. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2063-2081.	1.6	17
274	The impact of local stellar radiation on the H i column density distribution. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2261-2277.	1.6	89
275	The abundance of (not just) dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1366-1382.	1.6	130
276	Physical properties of simulated galaxy populations at z = 2 – I. Effect of metal-line cooling and feedback from star formation and AGN. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2931-2954.	1.6	59
277	Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling. Monthly Notices of the Royal Astronomical Society, 2013, 434, 148-162.	1.6	94
278	Soft X-ray and ultraviolet metal-line emission from the gas around galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2688-2702.	1.6	26
279	Probing reionization with LOFAR using 21-cm redshift space distortions. Monthly Notices of the Royal Astronomical Society, 2013, 435, 460-474.	1.6	69
280	A high molecular fraction in a subdamped absorber at zÂ= 0.56ã~ Monthly Notices of the Royal Astronomical Society, 2013, 433, 178-193.	1.6	22
281	On the evolution of the H i column density distribution in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2427-2445.	1.6	386
282	Sample variance and Lyman α forest transmission statistics. Monthly Notices of the Royal Astronomical Society, 2013, 428, 540-550.	1.6	40
283	How the diffuse Universe cools. Monthly Notices of the Royal Astronomical Society, 2013, 430, 3292-3313.	1.6	21
284	A measurement of galaxy halo mass from the surrounding HÂi Lyα absorption. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3103-3114.	1.6	31
285	AGN proximity zone fossils and the delayed recombination of metal lines. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1063-1078.	1.6	58
286	Prospects for detecting the 21Âcm forest from the diffuse intergalactic medium with LOFAR. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1755-1765.	1.6	22
287	The host-galaxy response to the afterglow of GRB 100901A. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2739-2754.	1.6	17
288	The impact of baryons on the spins and shapes of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3316-3329.	1.6	114

#	Article	IF	CITATIONS
289	The interaction between feedback from active galactic nuclei and supernovae. Scientific Reports, 2013, 3, .	1.6	16
290	The LOFAR radio environment. Astronomy and Astrophysics, 2013, 549, A11.	2.1	63
291	Initial deep LOFAR observations of epoch of reionization windows. Astronomy and Astrophysics, 2013, 550, A136.	2.1	128
292	Imaging neutral hydrogen on large scales during the Epoch of Reionization with LOFAR. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2964-2973.	1.6	46
293	NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT <i>z</i> â‰^ 2.4 IN THE KECK BARYONIG STRUCTURE SURVEY. Astrophysical Journal, 2012, 751, 94.	C 1.6	66
294	The First Billion Years simulation project. Galactic outflows and metal enrichment. Proceedings of the International Astronomical Union, 2012, 8, 17-20.	0.0	0
295	Absorption signatures of warm-hot gas at low redshift: broad H i Lyα absorbers. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1640-1663.	1.6	47
296	Simulating galactic outflows with thermal supernova feedback. Monthly Notices of the Royal Astronomical Society, 2012, 426, 140-158.	1.6	437
297	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	1.6	6
298	Rotation rates, sizes and star formation efficiencies of a representative population of simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 379-392.	1.6	44
299	Rest-frame ultraviolet line emission from the intergalactic medium at. Monthly Notices of the Royal Astronomical Society, 2012, 419, 780-798.	1.6	23
300	Disentangling galaxy environment and host halo mass. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2133-2146.	1.6	90
301	Modelling neutral hydrogen in galaxies using cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	18
302	The filling factor of intergalactic metals at redshift z= 3. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1053-1060.	1.6	41
303	Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2245-2262.	1.6	128
304	Influence of baryons on the orbital structure of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1863-1879.	1.6	29
305	Cold accretion flows and the nature of high column density H i absorption at redshift 3. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2809-2819.	1.6	126
306	Hydrodynamical simulations and semi-analytic models of galaxy formation: two sides of the same coin. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3579-3593.	1.6	27

#	Article	IF	CITATIONS
307	The XMM Cluster Survey: the interplay between the brightest cluster galaxy and the intracluster medium via AGN feedback. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2213-2229.	1.6	69
308	Properties of gas in and around galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2991-3010.	1.6	143
309	The origin of discs and spheroids in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1544-1555.	1.6	215
310	The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1726-1749.	1.6	381
311	THROUGH THICK AND THIN—H I ABSORPTION IN COSMOLOGICAL SIMULATIONS. Astrophysical Journal Letters, 2011, 737, L37.	3.0	115
312	Multifrequency, thermally coupled radiative transfer with traphic: method and tests. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1943-1964.	1.6	48
313	Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1965-1984.	1.6	185
314	Absorption signatures of warm-hot gas at low redshift: O vi. Monthly Notices of the Royal Astronomical Society, 2011, 413, 190-212.	1.6	53
315	Towards an understanding of the evolution of the scaling relations for supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1158-1164.	1.6	54
316	Calibrating galaxy redshifts using absorption by the surrounding intergalactic mediumâ~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 3265-3271.	1.6	47
317	The effect of variations in the input physics on the cosmic distribution of metals predicted by simulations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 353-371.	1.6	47
318	A SINFONI view of flies in the Spiderweb: a galaxy cluster in the making. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2245-2256.	1.6	45
319	The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3649-3665.	1.6	344
320	Cosmological simulations of the formation of the stellar haloes around disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2802-2820.	1.6	232
321	Quantifying the effect of baryon physics on weak lensing tomography. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2020-2035.	1.6	253
322	The correlation structure of dark matter halo properties. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L69-L73.	1.2	41
323	The rates and modes of gas accretion on to galaxies and their gaseous haloes. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2458-2478.	1.6	264
324	The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2782-2789.	1.6	101

#	Article	IF	CITATIONS
325	Dark matter haloes determine the masses of supermassive black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 405, L1-L5.	1.2	119
326	Metal-line emission from the warm-hot intergalactic medium - II. Ultraviolet. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1120-1138.	1.6	29
327	The enrichment history of cosmic metals. Monthly Notices of the Royal Astronomical Society, 2010, 409, 132-144.	1.6	50
328	Feedback and the structure of simulated galaxies at redshift z= 2. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1541-1556.	1.6	131
329	The physics driving the cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1536-1560.	1.6	704
330	Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	135
331	Metal-line emission from the warm-hot intergalactic medium - I. Soft X-rays. Monthly Notices of the Royal Astronomical Society, 2010, 407, 544-566.	1.6	39
332	Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	43
333	The case for AGN feedback in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	105
334	X-ray coronae in simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1403-1422.	1.6	131
335	Foregrounds for observations of the cosmological 21Âcm line. Astronomy and Astrophysics, 2010, 522, A67.	2.1	94
336	The MUSE second-generation VLT instrument. Proceedings of SPIE, 2010, , .	0.8	483
337	Foregrounds for observations of the cosmological 21Âcm line. Astronomy and Astrophysics, 2009, 500, 965-979.	2.1	148
338	Simulations of the Growth of Black Holes and Feedback from Active Galactic Nuclei. , 2009, , .		1
339	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	1.6	19
340	The effect of photoionization on the cooling rates of enriched, astrophysical plasmas. Monthly Notices of the Royal Astronomical Society, 2009, 393, 99-107.	1.6	753
341	Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1449-1458.	1.6	52
342	Non-parametric foreground subtraction for 21-cm epoch of reionization experiments. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1138-1152.	1.6	95

#	Article	IF	CITATIONS
343	Galaxiesïزلَّارَارَةُوَالَّارَةُوَالَّانِيَّةُ Galaxiesïزلَّارَةُوَالَّانِيَّةُ Galaxiesïزلَّارَةُوَالَّانِيَّةُ Galaxiesïزلَّارَةُ Galaxiesïزلَّانَ Galaxiesïزلَانَ Galaxiesïزلَانَ Galaxiesïزلَانَ Galaxiesïزلَّانَ Galaxiesïزلَانَ Galaxiesïtic Galaxiesïčli Galaxiesïtic Galaxie	rge-scale	216
344	Fast large-scale reionization simulations. Monthly Notices of the Royal Astronomical Society, 2009, 393, 32-48.	1.6	91
345	Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2009, 394, 1812-1824.	1.6	209
346	Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests. Monthly Notices of the Royal Astronomical Society, 2009, 398, 53-74.	1.6	668
347	Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2009, 399, 574-600.	1.6	525
348	Photoheating and supernova feedback amplify each other's effect on the cosmic star formation rate. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 396, L46-L50.	1.2	54
349	The origin of extended disc galaxies at <i>z</i> = 2. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 399, L64-L68.	1.2	23
350	New Science Opportunities Offered by MUSE. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 331-336.	0.3	5
351	Numerical Simulations of the Warm-Hot Intergalactic Medium. Space Science Reviews, 2008, 134, 295-310.	3.7	32
352	Clusters of Galaxies: Beyond the Thermal View. Space Science Reviews, 2008, 134, 1-6.	3.7	11
353	Dark matter halo concentrations in the <i>Wilkinson Microwave Anisotropy Probe</i> year 5 cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 390, L64-L68.	1.2	740
354	Simulating galactic outflows with kinetic supernova feedback. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1431-1444.	1.6	359
355	traphic- radiative transfer for smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2008, 389, 651-677.	1.6	100
356	Foreground simulations for the LOFAR-epoch of reionization experiment. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1319-1335.	1.6	217
357	Metallicity of the Intergalactic Medium Using Pixel Statistics. IV. Oxygen. Astrophysical Journal, 2008, 689, 851-864.	1.6	81
358	Numerical Simulations of the Warm-Hot Intergalactic Medium. , 2008, , 295-310.		0
359	MUSE: A Second-Generation Integral-Field Spectrograph for the VLT. , 2008, , 325-336.		0
360	EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5

#	Article	IF	CITATIONS
361	Star Formation Thresholds. Proceedings of the International Astronomical Union, 2007, 3, 247-255.	0.0	Ο
362	A large population of metal-rich, compact, intergalactic C IV absorbers - evidence for poor small-scale metal mixing. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1169-1194.	1.6	120
363	How Did the IGM become Enriched?. EAS Publications Series, 2007, 24, 165-175.	0.3	5
364	On the Importance of Local Sources of Radiation for Quasar Absorption Line Systems. Astrophysical Journal, 2006, 643, 59-67.	1.6	55
365	The Lyα Forest Power Spectrum from the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2006, 163, 80-109.	3.0	341
366	The Spatial Distribution of Metals in the Intergalactic Medium. Astrophysical Journal, 2006, 638, 45-51.	1.6	39
367	Probing unexplored territories with MUSE: a second generation instrument for the VLT. , 2006, , .		16
368	Lyα Emission from Structure Formation. Astrophysical Journal, 2005, 622, 7-27.	1.6	114
369	Confronting Cosmological Simulations with Observations of Intergalactic Metals. Astrophysical Journal, 2005, 620, L13-L17.	1.6	49
370	Observational tests of intergalactic enrichment models. Proceedings of the International Astronomical Union, 2005, 1, 289-294.	0.0	0
371	Abundances in the High-redshift Intergalactic Medium. Proceedings of the International Astronomical Union, 2005, 1, 557-568.	0.0	1
372	Metals in the intergalactic medium. Proceedings of the International Astronomical Union, 2005, 1, 313-317.	0.0	0
373	Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon. Astrophysical Journal, 2004, 602, 38-50.	1.6	100
374	Star Formation Thresholds and Galaxy Edges: Why and Where. Astrophysical Journal, 2004, 609, 667-682.	1.6	498
375	Ultraviolet Line Emission from Metals in the Lowâ€Redshift Intergalactic Medium. Astrophysical Journal, 2004, 606, 221-236.	1.6	29
376	The First Data Release of the Sloan Digital Sky Survey. Astronomical Journal, 2003, 126, 2081-2086.	1.9	800
377	Mapping the Cosmic Web with Ly Emission. Astrophysical Journal, 2003, 599, L1-L4.	1.6	31
378	A Survey of [CLC][ITAL]z[/ITAL][/CLC] ] 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Thre Additional Quasars at [CLC][ITAL]z[/ITAL][/CLC] ] 6. Astronomical Journal, 2003, 125, 1649-1659.	e _{1.9}	654

#	Article	IF	CITATIONS
379	A Feature at [CLC][ITAL]z[/ITAL][/CLC] â^¼â€‰3.2 in the Evolution of the L[CLC]y[/CLC]α Forest Optical De Astronomical Journal, 2003, 125, 32-52.	epth. 1.9	87
380	Metallicity of the Intergalactic Medium Using Pixel Statistics. II. The Distribution of Metals as Traced by Civ. Astrophysical Journal, 2003, 596, 768-796.	1.6	338
381	Recovering Intergalactic Metallicity Using Pixel Optical Depths. Astrophysics and Space Science Library, 2003, , 243-248.	1.0	0
382	Constraints on Reionization from the Thermal History of the Intergalactic Medium. Astrophysical Journal, 2002, 567, L103-L106.	1.6	161
383	Metallicity of the Intergalactic Medium Using Pixel Statistics. I. Method. Astrophysical Journal, 2002, 576, 1-20.	1.6	62
384	Constraining the Redshiftz â^¼â€‰6 Quasar Luminosity Function Using Gravitational Lensing. Astrophysical Journal, 2002, 580, 63-72.	1.6	42
385	The Enrichment History of the Intergalactic Medium: Oviin Lyα Forest Systems at Redshiftz â^1⁄4 2. Astrophysical Journal, 2002, 578, 43-59.	1.6	78
386	Detection of H[CLC]e[/CLC] [CSC]ii[/CSC] Reionization in the Sloan Digital Sky Survey Quasar Sample. Astrophysical Journal, 2002, 574, L111-L114.	1.6	72
387	Galactic Winds in the Intergalactic Medium. Astrophysical Journal, 2002, 578, L5-L8.	1.6	131
388	Problems for Modified Newtonian Dynamics in Clusters and the Lyα Forest?. Astrophysical Journal, 2001, 561, 550-558.	1.6	94
389	Modelâ€independent Insights into the Nature of the Lyα Forest and the Distribution of Matter in the Universe. Astrophysical Journal, 2001, 559, 507-515.	1.6	294
390	A Physical Upper Limit on the H [CSC]i[/CSC] Column Density of Gas Clouds. Astrophysical Journal, 2001, 562, L95-L98.	1.6	133
391	Metal Enrichment of the Intergalactic Medium in Cosmological Simulations. Astrophysical Journal, 2001, 561, 521-549.	1.6	187
392	Observational signatures of feedback in QSO absorption spectra. Monthly Notices of the Royal Astronomical Society, 2001, 321, 450-462.	1.6	49
393	Metals in the Intergalactic Medium. Astrophysics and Space Science, 2001, 277, 555-560.	0.5	5
394	Metal Enrichment of the Intergalactic Medium atz = 3 by Galactic Winds. Astrophysical Journal, 2001, 560, 599-605.	1.6	137
395	On the Relation between High-Redshift Starburst Galaxies and Damped L[CLC]y[/CLC]α Systems. Astrophysical Journal, 2001, 559, L1-L4.	1.6	60
396	The Enrichment History of the Intergalactic Medium—Measuring the C [CSC]iv[/CSC]/H [CSC]i[/CSC] Ratio in the L[CLC]y[/CLC]α Forest. Astronomical Journal, 2000, 120, 1175-1191.	1.9	174

#	Article	IF	CITATIONS
397	Ly a absorption systems and the intergalactic medium. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2049-2062.	1.6	15
398	Broadening of QSO Ly forest absorbers. Monthly Notices of the Royal Astronomical Society, 2000, 315, 600-610.	1.6	86
399	The thermal history of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2000, 318, 817-826.	1.6	336
400	The Detection of Oxygen in the Low-Density Intergalactic Medium. Astrophysical Journal, 2000, 541, L1-L4.	1.6	84
401	Dependences of QSO Ly absorption line statistics on cosmological parameters. Monthly Notices of the Royal Astronomical Society, 1999, 303, L58-L62.	1.6	45
402	Measuring the equation of state of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 1999, 310, 57-70.	1.6	123
403	On the relation between the Schmidt and Kennicutt-Schmidt star formation laws and its implications for numerical simulations. Monthly Notices of the Royal Astronomical Society, 0, 383, 1210-1222.	1.6	521
404	The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations. Monthly Notices of the Royal Astronomical Society, 0, , stw3361.	1.6	34
405	Angular momentum evolution of galaxies over the past 10ÂGyr: A MUSE and KMOS dynamical survey of 400 star-forming galaxies from \$z\$Â=Â0.3–1.7. Monthly Notices of the Royal Astronomical Society, 0, , stx201.	1.6	45
406	How to get cool in the heat: comparing analytic models of hot, cold, and cooling gas in haloes and galaxies with EAGLE. Monthly Notices of the Royal Astronomical Society, 0, , stx243.	1.6	32
407	Calibrated, cosmological hydrodynamical simulations with variable IMFs I: Method and effect on global galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	15
408	nIFTy galaxy cluster simulations VI: the dynamical imprint of substructure on gaseous cluster outskirts Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	8
409	Discovery of a multi-phase OVI and OVII absorber in the circumgalactic/intergalactic transition region. Astronomy and Astrophysics, 0, , .	2.1	5