Qingfa Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2713502/publications.pdf Version: 2024-02-01

OINCEA WANC

#	Article	IF	CITATIONS
1	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	11.1	705
2	Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 1359-1365.	6.6	656
3	Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 2015, 12, 646-656.	8.2	537
4	Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 2015, 27, 5309-5327.	11.1	492
5	Nobleâ€Metalâ€Free Electrocatalysts for Oxygen Evolution. Small, 2019, 15, e1804201.	5.2	388
6	Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Applied Catalysis B: Environmental, 2018, 227, 386-408.	10.8	371
7	Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 2015, 5, 6594-6599.	5.5	252
8	Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chemical Engineering Science, 2018, 180, 95-125.	1.9	233
9	Selfâ€Templated Fabrication of CoO–MoO ₂ Nanocages for Enhanced Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1702324.	7.8	224
10	Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: Experiment and DFT studies. Applied Catalysis B: Environmental, 2018, 224, 101-108.	10.8	197
11	Direct Z-scheme composite of CdS and oxygen-defected CdWO 4 : An efficient visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2016, 198, 154-161.	10.8	196
12	High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 2015, 82, 417-424.	5.4	140
13	Morphology Evolution of TiO ₂ Facets and Vital Influences on Photocatalytic Activity. ACS Applied Materials & amp; Interfaces, 2012, 4, 1650-1655.	4.0	105
14	Quantitative conversion of triglycerides to hydrocarbons over hierarchical ZSM-5 catalyst. Applied Catalysis B: Environmental, 2015, 166-167, 327-334.	10.8	103
15	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2014, 6, 22126-22137.	4.0	102
16	Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Applied Catalysis B: Environmental, 2014, 147, 167-174.	10.8	100
17	Hydrotreating of C18 fatty acids to hydrocarbons on sulphided NiW/SiO2–Al2O3. Fuel Processing Technology, 2013, 116, 165-174.	3.7	94
18	Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation. Journal of Hazardous Materials, 2019, 367, 568-576.	6.5	94

#	Article	IF	CITATIONS
19	A 3D dendritic WSe ₂ catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 12149-12153.	5.2	88
20	Quantum dot self-decorated TiO2 nanosheets. Chemical Communications, 2013, 49, 6593.	2.2	77
21	W ₁₈ O ₄₉ nanowire alignments with a BiOCl shell as an efficient photocatalyst. Nanoscale, 2014, 6, 8865.	2.8	74
22	Mesoporous W ₁₈ O ₄₉ hollow spheres as highly active photocatalysts. Chemical Communications, 2014, 50, 10959.	2.2	73
23	Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution. Dalton Transactions, 2017, 46, 10545-10548.	1.6	70
24	Ti ³⁺ -defected and V-doped TiO ₂ quantum dots loaded on MCM-41. Chemical Communications, 2014, 50, 988-990.	2.2	63
25	Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and) Tj ETQq1 1 0.784314 rgBT	/Overlock 10.8	10 Tf 50 50
26	Hydroconversion of Jatropha Oil to Alternative Fuel over Hierarchical ZSM-5. Industrial & Engineering Chemistry Research, 2014, 53, 19916-19924.	1.8	58
27	Multi-scale study on bifunctional Co/Fe–N–C cathode catalyst layers with high active site density for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 299, 120656.	10.8	58
28	Activation of persulfate by EDTA-2K-derived nitrogen-doped porous carbons for organic contaminant removal: Radical and non-radical pathways. Chemical Engineering Journal, 2020, 386, 124009.	6.6	56
29	Thermal stability and kinetic of decomposition of nitrated HTPB. Journal of Hazardous Materials, 2009, 172, 1659-1664.	6.5	55
30	Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene. Journal of Molecular Catalysis A, 2007, 273, 73-80.	4.8	53
31	Effect of support on the NiMo phase and its catalytic hydrodeoxygenation of triglycerides. Fuel, 2015, 159, 430-435.	3.4	53
32	Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 7893-7902.	3.8	49
33	Doping carbon nanotubes with N, S, and B for electrocatalytic oxygen reduction: a systematic investigation on single, double, and triple doped modes. Catalysis Science and Technology, 2017, 7, 4007-4016.	2.1	46
34	Self-supported Pt nanoflakes-doped amorphous Ni(OH)2 on Ni foam composite electrode for efficient and stable methanol oxidation. Journal of Colloid and Interface Science, 2019, 536, 189-195.	5.0	45
35	Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins. Applied Catalysis A: General, 2019, 572, 24-33.	2.2	43
36	Electrodeposition of NiS/Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 2546-2556.	3.8	42

#	Article	IF	CITATIONS
37	Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@Cu2O catalyst. Journal of CO2 Utilization, 2020, 37, 204-212.	3.3	41
38	Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21870-21882.	3.8	38
39	Porous CoO-CeO2 heterostructures as highly active and stable electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2018, 43, 22529-22537.	3.8	35
40	Hierarchically Porous Coâ^'Nâ^'C Cathode Catalyst Layers for Anion Exchange Membrane Fuel Cells. ChemSusChem, 2019, 12, 4165-4169.	3.6	34
41	N-dodecane hydroisomerization over Pt/ZSM-22: Controllable microporous Brönsted acidity distribution and shape-selectivity. Applied Catalysis A: General, 2020, 590, 117335.	2.2	34
42	Investigation of nitrate reduction on polycrystalline Pt nanoparticles with controlled crystal plane. Journal of Electroanalytical Chemistry, 2015, 755, 210-214.	1.9	33
43	Confinement of Fe2O3 nanoparticles in the shell of N-doped carbon hollow microsphere for efficient oxygen reduction reaction. Chemical Engineering Science, 2019, 207, 235-246.	1.9	32
44	Tuning the decarboxylation selectivity for deoxygenation of vegetable oil over Pt–Ni bimetal catalysts via surface engineering. Catalysis Science and Technology, 2018, 8, 1126-1133.	2.1	31
45	Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution. Materials Today Chemistry, 2019, 11, 112-118.	1.7	30
46	Donor–Acceptor Couples of Metal and Metal Oxides with Enriched Ni ³⁺ Active Sites for Oxygen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 17501-17510.	4.0	29
47	Epoxidation of hydroxyl-terminated polybutadiene with hydrogen peroxide under phase-transfer catalysis. Journal of Molecular Catalysis A, 2009, 309, 89-94.	4.8	28
48	Hydroconversion of Waste Cooking Oil into Green Biofuel over Hierarchical USY-Supported NiMo Catalyst: A Comparative Study of Desilication and Dealumination. Catalysts, 2017, 7, 281.	1.6	28
49	Hydroconversion of Waste Cooking Oil into Bioâ€Jet Fuel over a Hierarchical NiMo/USY@Alâ€5BAâ€15 Zeolite. Chemical Engineering and Technology, 2018, 41, 590-597.	0.9	28
50	Selective Hydroconversion of Oleic Acid into Aviation-Fuel-Range Alkanes over Ultrathin Ni/ZSM-5 Nanosheets. Industrial & Engineering Chemistry Research, 2019, 58, 5432-5444.	1.8	26
51	Pt–Carbon interaction-determined reaction pathway and selectivity for hydrogenation of 5-hydroxymethylfurfural over carbon supported Pt catalysts. Catalysis Science and Technology, 2021, 11, 1298-1310.	2.1	26
52	Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation. Electrochimica Acta, 2019, 296, 418-426.	2.6	25
53	Hollow MFI Zeolite Supported Pt Catalysts for Highly Selective and Stable Hydrodeoxygenation of Guaiacol to Cycloalkanes. Nanomaterials, 2019, 9, 362.	1.9	24
54	Epoxidation of allyl chloride and hydrogen peroxide over titanium silicalite-1 film on SiO2 pellet support. Journal of Chemical Technology and Biotechnology, 2007, 82, 414-420.	1.6	23

#	Article	IF	CITATIONS
55	In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid. Electrochimica Acta, 2018, 291, 328-334.	2.6	23
56	Hollow Hierarchical Silicalite-1 Zeolite Encapsulated PtNi Bimetals for Selective Hydroconversion of Methyl Stearate into Aviation Fuel Range Alkanes. Industrial & Engineering Chemistry Research, 2020, 59, 8601-8611.	1.8	23
57	Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 34219-34224.	1.7	22
58	TPABr-grafted MWCNT as bifunctional template to synthesize hierarchical ZSM-5 zeolite. Materials Letters, 2017, 197, 111-114.	1.3	22
59	Controllable synthesis of hierarchical ZSM-5 for hydroconversion of vegetable oil to aviation fuel-like hydrocarbons. RSC Advances, 2017, 7, 46109-46117.	1.7	22
60	<i>n</i> -Dodecane Hydroisomerization over Hierarchical ZSM-22 Prepared by a Dual-Protected Alkali Treatment. Industrial & Engineering Chemistry Research, 2019, 58, 8495-8505.	1.8	22
61	Selective steam reforming of <scp><i>n</i></scp> â€dodecane over stable subnanometric NiPt clusters encapsulated in Silicaliteâ€1 zeolite. AICHE Journal, 2020, 66, e16917.	1.8	22
62	Molecular dimensions of tetrahydrodicyclopentadiene isomers and shape selectivity of zeolitic catalysts. Catalysis Communications, 2005, 6, 737-741.	1.6	21
63	Kinetics of Epoxidation of Hydroxyl-Terminated Polybutadiene with Hydrogen Peroxide under Phase Transfer Catalysis. Industrial & Engineering Chemistry Research, 2009, 48, 1364-1371.	1.8	19
64	Aqueous substitution synthesis of platinum modified amorphous nickel hydroxide on nickel foam composite electrode for efficient and stable hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 14258-14265.	3.8	19
65	Efficient electrochemical reduction of carbon dioxide into ethylene boosted by copper vacancies on stepped cuprous oxide. Journal of CO2 Utilization, 2020, 38, 125-131.	3.3	19
66	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Interfaces, 2021, 13, 58605-58618.	4.0	18
67	A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution. Green Energy and Environment, 2017, 2, 151-159.	4.7	17
68	Self-Pillared ZSM-5-Supported Ni Nanoparticles as an Efficient Catalyst for Upgrading Oleic Acid to Aviation-Fuel-Range-Alkanes. Industrial & Engineering Chemistry Research, 2019, 58, 13112-13121.	1.8	17
69	Influence of Pt–Pd/TS-1 Catalyst Preparation on Epoxidation of Olefins with Hydrogen Peroxide. Catalysis Letters, 2005, 103, 161-164.	1.4	16
70	A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al2O3 catalyst. Frontiers of Chemical Science and Engineering, 2017, 11, 177-184.	2.3	16
71	Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction. Chinese Journal of Chemical Engineering, 2022, 41, 320-328.	1.7	16
72	Epoxidation of allyl choride with molecular oxygen and 2-ethyl-anthrahydroquinone catalyzed by TS-1. Journal of Molecular Catalysis A, 2005, 229, 71-75.	4.8	15

#	Article	IF	CITATIONS
73	Trace sulfur promoted Fe, N-codoped carbon black as electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 3625-3635.	3.8	15
74	TEOS-modified Ni/ZSM-5 nanosheet catalysts for hydroconversion of oleic acid to high-performance aviation fuel: Effect of acid spatial distribution. Microporous and Mesoporous Materials, 2020, 291, 109705.	2.2	15
75	Understanding Structureâ€activity Relationship on Metalâ€Organicâ€Frameworkâ€Derived Catalyst for CO ₂ Electroreduction to C ₂ Products. ChemElectroChem, 2021, 8, 3174-3180.	1.7	15
76	Enhancing tetralin hydrogenation activity and sulphur-tolerance of Pt/MCM-41 catalyst with Al(NO ₃) ₃ , AlCl ₃ and Al(CH ₃) ₃ . Catalysis Science and Technology, 2014, 4, 2081-2090.	2.1	14
77	Highly dispersed γ-Fe ₂ O ₃ embedded in nitrogen doped carbon for the efficient oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4581-4587.	2.1	14
78	Core–Shell Pt@Ir Nanothorns on Carbon Fiber Paper Electrodes for Carboxylic Acid Valorization via Kolbe Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18061-18066.	3.2	14
79	Hydroconversion of Waste Cooking Oil into Bio-Jet Fuel over NiMo/SBUY-MCM-41. Catalysts, 2019, 9, 466.	1.6	14
80	Structure-sensitive hydro-conversion of oleic acid to aviation-fuel-range-alkanes over alumina-supported nickel catalyst. Catalysis Communications, 2020, 134, 105842.	1.6	14
81	Tailoring the hetero-structure of iron oxides in the framework of nitrogen doped carbon for the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 25791-25804.	5.2	14
82	Enhancing selective hydroconversion of C18 fatty acids into hydrocarbons by hydrogen-donors. Fuel, 2014, 133, 241-244.	3.4	13
83	Selfâ€Templated Synthesis of Co _{1â€<i>x</i>} S Porous Hexagonal Microplates for Efficient Electrocatalytic Oxygen Evolution. ChemElectroChem, 2018, 5, 1167-1172.	1.7	13
84	Kolbe Electrolysis of Biomassâ€Derived Fatty Acids Over Pt Nanocrystals in an Electrochemical Cell. ChemCatChem, 2020, 12, 642-648.	1.8	13
85	Influence of Impurities and Oxidation on Hydroconversion of Waste Cooking Oil into Bioâ€jet Fuel. Chemical Engineering and Technology, 2020, 43, 273-281.	0.9	13
86	Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts, 2021, 11, 535.	1.6	13
87	Influence of the MnO ₂ Phase on Oxygen Evolution Reaction Performance for Lowâ€Loading Iridium Electrocatalysts. ChemElectroChem, 2021, 8, 418-424.	1.7	13
88	Selfâ€Supported Hierarchical Shell@Core Ni ₃ S ₂ @Ni Foam Composite Electrocatalyst with High Efficiency and Longâ€Term Stability for Methanol Oxidation. ChemElectroChem, 2018, 5, 2376-2382.	1.7	12
89	Mn/Cu nanoclusters-grafted N-doped carbon nanotubes: Robust oxygen electrode catalysts for Zn-air batteries. International Journal of Hydrogen Energy, 2020, 45, 27230-27243.	3.8	12
90	Electrodeposition of Cobalt Phosphosulfide Nanosheets on Carbon Fiber Paper as Efficient Electrocatalyst for Oxygen Evolution. ChemElectroChem, 2018, 5, 1677-1682.	1.7	11

#	Article	IF	CITATIONS
91	Electrochemical behavior of IrxRu1â^'xO2 oxides as anodic electrocatalyst for electrosynthesis of dinitrogen pentoxide. Electrochimica Acta, 2012, 74, 227-234.	2.6	10
92	AlCl3-Promoted MCM-41-Supported Platinum Catalysts with High Activity and Sulfur-Tolerance for Tetralin Hydrogenation: Effect of Al/Pt Ratio. Catalysis Letters, 2013, 143, 454-462.	1.4	10
93	Nanoâ€engineered nickel catalysts supported on 4â€channel αâ€Al 2 O 3 hollow fibers for dry reforming of methane. AICHE Journal, 2018, 64, 2625-2631.	1.8	10
94	Catalytic synthesis of high-energy–density jet-fuel-range polycyclic fuel by dimerization reaction. Fuel, 2022, 308, 122077.	3.4	10
95	Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons. Fuel, 2022, 326, 125021.	3.4	10
96	Hydroconversion of C18 fatty acids using PtNi/Al2O3: Insight in the role of hydroxyl groups in Al2O3. Catalysis Communications, 2017, 97, 14-17.	1.6	9
97	Electrochemical valorization of carboxylates in aqueous solution for the production of biofuels, fine chemicals, and hydrogen. Green Chemistry, 2020, 22, 525-531.	4.6	9
98	Carbon fiber paper supported nano-Pt electrode with high electrocatalytic activity for concentrated nitric acid reduction. Journal of Electroanalytical Chemistry, 2017, 794, 43-48.	1.9	8
99	Highly Selective Hydrodeoxygenation of Dibenzofuran into Bicyclohexane over Hierarchical Pt/ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 2838-2848.	1.8	8
100	Study on deactivation and regeneration of Pd/Al2O3catalyst in hydrogen peroxide production by the anthraquinone process. Reaction Kinetics and Catalysis Letters, 2004, 81, 297-304.	0.6	7
101	AlCl3-promoted MCM-41-supported platinum catalysts with high activity and sulfur-tolerance for tetralin hydrogenation: Effect of Pt–Al interaction. Catalysis Communications, 2013, 35, 6-10.	1.6	7
102	Direct synthesis of hydrogen peroxide over Pd nanoparticles embedded between HZSM-5 nanosheets layers. Chinese Journal of Chemical Engineering, 2020, 28, 2577-2586.	1.7	7
103	Electrochemical synthesis of N2O5 by oxidation of N2O4 in nitric acid with PTFE membrane. Electrochimica Acta, 2007, 52, 3667-3672.	2.6	6
104	Fabrication of hierarchical ZSM-22 hollow sphere. Materials Letters, 2019, 244, 96-99.	1.3	6
105	Selective Electrochemical Decarboxylation of <i>n</i> -Octanoic Acid to Hydrocarbons on Pt Nanocrystals. ACS Sustainable Chemistry and Engineering, 2021, 9, 5288-5297.	3.2	6
106	High pressure and temperature sensing for the downhole applications. Proceedings of SPIE, 2007, , .	0.8	5
107	Pt nanocrystals selectively shaped by tuning the reductant concentration. Materials Chemistry and Physics, 2017, 189, 80-83.	2.0	5
108	Highly (110)â€Oriented Co _{1â€x} S Nanosheet Arrays on Carbon Fiber Paper as Highâ€Performance and Binderâ€Free Electrodes for Oxygen Production. ChemistrySelect, 2018, 3, 3970-3974.	0.7	5

#	Article	IF	CITATIONS
109	Edge/Defect Sites in α o 1â^' m Fe m (OH) x Nanoplates Responsible for Water Oxidation Activity. ChemSusChem, 2019, 12, 2755-2762.	3.6	5
110	Electrocatalytic methyl esterification of fatty acid using boron-doped-diamond electrodes. Algal Research, 2020, 46, 101816.	2.4	5
111	Al(CH ₃) ₃ -promoted Pt/MCM-41 catalysts for tetralin hydrogenation in the presence of benzothiophene and promotion mechanism of Al-promoted Pt/MCM-41 catalysts. RSC Advances, 2015, 5, 42468-42476.	1.7	4
112	Tuning the morphological and electronic structure of amorphous nickel-based electrocatalysts by anion regulation for water oxidation in neutral media. Inorganic Chemistry Frontiers, 2019, 6, 3093-3096.	3.0	4
113	Electroactive Edgeâ€Siteâ€Enriched αâ€Co 0.9 Fe 0.1 (OH) x Nanoplates for Efficient Overall Water Splitting. ChemElectroChem, 2019, 6, 2415-2422.	1.7	4
114	A Pt@IrO2 core-shell catalyst for effective electrocatalytic reduction of concentrated nitric acid. Applied Surface Science, 2019, 481, 1299-1304.	3.1	4
115	Facile synthesis of self-supported amorphous phosphorus-doped Ni(OH) ₂ composite anodes for efficient water oxidation. Catalysis Science and Technology, 2020, 10, 263-267.	2.1	4
116	Synergetic electrochemical HNO3 reduction on the activated-CFP supported nano-Pt electrodes. Journal of Electroanalytical Chemistry, 2020, 869, 114182.	1.9	4
117	The Reactants' Phase State: A Nonnegligible Factor in Tetralin Hydrogenation Catalysts Evaluation. International Journal of Chemical Engineering, 2014, 2014, 1-8.	1.4	1
118	Equilibrium Data for the N ₂ O ₅ + HNO ₃ + N ₂ O ₄ System at 258.2 K, 265.2 K, 273.2 K, and 281.2 K. Journal of Chemical & Engineering Data, 2009, 54, 2077-2080.	1.0	0
119	Densities and Excess Molar Volumes of the Ternary System N2O4+ H2O + HNO3at 278.15 K, 283.15 K, 288.15 K, and 293.15 K. Journal of Chemical & Engineering Data, 2011, 56, 2416-2419.	1.0	0
120	Morphology and Microstructure of Ir _x Si _{1-x} O ₂ Oxides as Anodic Electrocatalyst for Electrosynthesis of Dinitrogen Pentoxide. Applied Mechanics and Materials, 0, 316-317, 1024-1028.	0.2	0