Arun Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2713308/publications.pdf

Version: 2024-02-01

24 1,163 20 22 papers citations h-index g-index

24 24 24 1063
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polycarboxylateâ€Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10 ^{â°'1} â€S cm ^{â°'1} . Angewandte Chemie - International Ed 2018, 57, 6662-6666.	dit t on,	153
2	Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 ^{â^'2} â€S cm ^{â^'1} or Higher. Chemistry - A European Journal, 2 25, 6259-6269.	0197	117
3	Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.	1.7	92
4	A Water-Stable Twofold Interpenetrating Microporous MOF for Selective CO ₂ Adsorption and Separation. Inorganic Chemistry, 2017, 56, 13991-13997.	1.9	88
5	Polycarboxylateâ€Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10 ^{â°1} â€S cm ^{â°1} . Angewandte Chemie, 2018, 130, 677	12-6776.	88
6	Two azo-functionalized luminescent 3D Cd(<scp>ii</scp>) MOFs for highly selective detection of Fe ³⁺ and Al ³⁺ . New Journal of Chemistry, 2018, 42, 12865-12871.	1.4	69
7	A new set of Cd(<scp>ii</scp>)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO ₂ and cationic dyes. Dalton Transactions, 2017, 46, 9901-9911.	1.6	55
8	A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO ₂ from CO ₂ –N ₂ and CO ₂ –CH ₄ gas mixtures with high CO ₂ loading. Dalton Transactions, 2017, 46, 15280-15286.	1.6	46
9	Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth and Design, 2019, 19, 5343-5353.	1.4	41
10	Porous Anionic Co(II) Metalâ€Organic Framework, with a High Density of Amino Groups, as a Superior Luminescent Sensor for Turnâ€on Al(III) Detection. Chemistry - A European Journal, 2021, 27, 11804-11810.	1.7	41
11	Copperâ€Catalyzed Regioselective Cascade Alkylation and Cyclocondensation of Quinoline <i>N</i> à€Oxides with Diazo Esters: Direct Access to Conjugated Ï€â€Systems. Chemistry - A European Journal, 2016, 22, 13826-13830.	1.7	39
12	A Moistureâ€Stable 3D Microporous Co ^{II} â€Metal–Organic Framework with Potential for Highly Selective CO ₂ Separation under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 5982-5986.	1.7	37
13	A 2D Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction., 2020, 2, 1343-1350.		37
14	Two Closely Related Zn(II)-MOFs for Their Large Difference in CO ₂ Uptake Capacities and Selective CO ₂ Sorption. Inorganic Chemistry, 2020, 59, 7056-7066.	1.9	35
15	Three Co(II) Metal–Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies. Inorganic Chemistry, 2019, 58, 6246-6256.	1.9	34
16	Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm, 2016, 18, 4323-4335.	1.3	30
17	Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO ₂ Separation under Dry and Wet Environments through Direct CO ₂ –Sulfone Interactions. ACS Applied Materials & Interfaces, 2020, 12, 41177-41184.	4.0	30
18	A Trifunctional Luminescent 3D Microporous MOF with Potential for CO ₂ Separation, Selective Sensing of a Metal Ion, and Recognition of a Small Organic Molecule. European Journal of Inorganic Chemistry, 2018, 2018, 2785-2792.	1.0	28

#	Article	IF	CITATIONS
19	A "Thermodynamically Stable―2D Nickel Metal–Organic Framework over a Wide pH Range with Scalable Preparation for Efficient C ₂ s over C ₁ Hydrocarbon Separations. Chemistry - A European Journal, 2020, 26, 12624-12631.	1.7	28
20	A Phosphateâ€Based Silver–Bipyridine 1D Coordination Polymer with Crystallized Phosphoric Acid as Superprotonic Conductor. Chemistry - A European Journal, 2020, 26, 4607-4612.	1.7	24
21	A Microporous Co-MOF for Highly Selective CO ₂ Sorption in High Loadings Involving Aryl C–H··Ôa•Câ•O Interactions: Combined Simulation and Breakthrough Studies. Inorganic Chemistry, 2019, 11553-11560.	58,1.9	23
22	A 3D Microporous MOF with <i>mab</i> Topology for Selective CO ₂ Adsorption and Separation. ChemistrySelect, 2018, 3, 917-921.	0.7	15
23	Two 2D microporous MOFs based on bent carboxylates and a linear spacer for selective CO ₂ adsorption. CrystEngComm, 2019, 21, 535-543.	1.3	13
24	Frontispiece: Metal–Organic Frameworks and Other Crystalline Materials for Ultrahigh Superprotonic Conductivities of 10 ^{â^'2} â€S cm ^{â^'1} or Higher. Chemistry - A Eur Journal, 2019, 25, .	оревл	0