Nadia Valentina MartÃ-nez-Villegas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2713234/publications.pdf

Version: 2024-02-01

41 papers 687

687363 13 h-index 25 g-index

43 all docs 43 docs citations

43 times ranked

947 citing authors

#	Article	IF	CITATIONS
1	Morphological characteristics and accumulation of arsenic in Argyrochosma formosa (Liebm.) Windham developed in a highly contaminated site with arsenic in Matehuala, SLP, México. Environmental Science and Pollution Research, 2022, 29, 2685-2698.	5.3	3
2	Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environmental Science and Pollution Research, 2022, 29, 34147-34163.	5.3	22
3	Tl(I) adsorption behavior on K-illite and on humic acids. Applied Geochemistry, 2022, 138, 105220.	3.0	7
4	Identification of Soil Arsenic Contamination in Rice Paddy Field Based on Hyperspectral Reflectance Approach. Soil Systems, 2022, 6, 30.	2.6	11
5	Spatial distribution based on optimal interpolation techniques and assessment of contamination risk for toxic metals in the surface soil. Journal of South American Earth Sciences, 2022, 115, 103763.	1.4	19
6	Surfactant suspended multi-wall carbon nanotube stability in artificial water samples of different hydrogeochemical families. Applied Geochemistry, 2022, 139, 105252.	3.0	1
7	An Investigation on the Lead Removal From Soil Contaminated by Mining and Industrial Wastes Using Soapnut in the Batch Washing Process. Journal of Ecological Engineering, 2021, 22, 1-16.	1.1	1
8	Transformation of Hexagonal Birnessite upon Reaction with Thallium(I): Effects of Birnessite Crystallinity, pH, and Thallium Concentration. Environmental Science & Environmen	10.0	13
9	Column Experiment for the Removal of Cadmium, Copper, Lead and Zinc from Artificially Contaminated Soil using EDTA, Rhamnolipids, and Soapnut. European Journal of Environment and Earth Sciences, 2021, 2, 1-7.	0.3	1
10	Nitric oxide modified growth, nutrient uptake and the antioxidant defense system in tomato seedlings stressed with arsenic. Theoretical and Experimental Plant Physiology, 2021, 33, 205-223.	2.4	9
11	Paracyclops chiltoni inhabiting water highly contaminated with arsenic: Water chemistry, population structure, and arsenic distribution within the organism. Environmental Pollution, 2021, 284, 117155.	7.5	9
12	Inorganic and organic characterization of Santa LucÃa salt mine peloid for quality evaluations. Environmental Science and Pollution Research, 2020, 27, 15944-15958.	5.3	11
13	Alluvial and gypsum karst geological transition favors spreading arsenic contamination in Matehuala, Mexico. Science of the Total Environment, 2020, 707, 135340.	8.0	10
14	The labile fractions of metals and arsenic in miningâ€impacted soils are explained by soil properties and metal source characteristics. Journal of Environmental Quality, 2020, 49, 417-427.	2.0	6
15	Role of unsaturated soil above a heavily contaminated aquifer in the natural attenuation of arsenic. E3S Web of Conferences, 2019, 98, 09017.	0.5	4
16	Tl(I) sorption behavior on birnessite and its implications for mineral structural changes. Geochimica Et Cosmochimica Acta, 2019, 248, 356-369.	3.9	48
17	Impact of Silicon Nanoparticles on the Antioxidant Compounds of Tomato Fruits Stressed by Arsenic. Foods, 2019, 8, 612.	4.3	25
18	Removal of Cu, Cd, Pb and Zn from Contaminated Soil by Using Plant-Based Surfactants, Sapindus mukorossi L (Soapnut) and Acacia Concinna (Shikakai). International Journal of Environmental Science and Development, 2019, 10, 183-187.	0.6	1

#	Article	IF	CITATIONS
19	OPTIMIZING THE DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY METHOD WITH A HANGING MERCURY ELECTRODE FOR THALLIUM (I) DETERMINATION IN THE PRESENCE OF LEAD (II) AND COPPER (II) FOR APPLICATION IN CONTAMINATED SOILS. Revista Internacional De Contaminacion Ambiental, 2019, 35, 481-494.	0.4	4
20	Radioactivity levels in peloids used in main Cuban spas. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 95-99.	1.5	8
21	Zinc Removal from Soil by Washing with Saponin Obtained from Sapindus mukorossi. Journal of Environmental Analytical Chemistry, 2018, 05, .	0.3	5
22	Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water. International Journal of Environmental Research and Public Health, 2018, 15, 1060.	2.6	12
23	Instrumental neutron activation analysis of peloids from main Cuban spas. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 1079-1087.	1.5	4
24	Assessment of Some Trace Chemical Elements in CajÃo Beach Peloid Using Nuclear Analytical Techniques. KnE Engineering, 2018, 3, 89.	0.1	1
25	Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic. Journal of Hazardous Materials, 2017, 339, 114-121.	12.4	16
26	Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico. Journal of Hazardous Materials, 2017, 339, 330-339.	12.4	63
27	SÃNTESIS DE ARSENIATOS DE CALCIO (GUERINITA, HAIDINGERITA Y FARMACOLITA) MORFOLÓGICAMENTE SIMILARES A LOS ENCONTRADOS EN SUELOS CONTAMINADOS. Revista Internacional De Contaminacion Ambiental, 2017, 33, 153-163.	0.4	3
28	Revised aqueous solubility product constants and a simple laboratory synthesis of the Pb(II) hydroxycarbonates: Plumbonacrite and hydrocerussite. Geochemical Journal, 2017, 51, 315-328.	1.0	5
29	Santa Rosa de Cop $ ilde{A}_i$ n; una propuesta hacia una nueva gesti $ ilde{A}^3$ n del agua. Econom $ ilde{A}$ a Y Administraci $ ilde{A}^3$ n (E&A), 2016, 6, .	0.2	0
30	Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Science, 2015, 104, 36-47.	5.2	25
31	Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction. Boletin De La Sociedad Geologica Mexicana, 2015, 67, 479-491.	0.3	5
32	Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes. Boletin De La Sociedad Geologica Mexicana, 2015, 67, 433-446.	0.3	59
33	Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environmental Pollution, 2013, 176, 114-122.	7.5	81
34	Morphology and Solubility Products of Calcium Arsenates Found in Arsenic Contaminated Soils in an Abandoned Smelter. Procedia Earth and Planetary Science, 2013, 7, 562-565.	0.6	0
35	Importance of Dynamic Soil Properties in Metal Retention: An Example from Long-Term Cu Partitioning and Redistribution Studies Using Model Systems. Environmental Science & Environmental Science & 2012, 46, 8069-8074.	10.0	7
36	Natural zinc enrichment in peatlands: Biogeochemistry of ZnS formation. Geochimica Et Cosmochimica Acta, 2012, 84, 165-176.	3.9	29

#	Article	IF	CITATIONS
37	Solid- and Solution-Phase Organics Dictate Copper Distribution and Speciation in Multicomponent Systems Containing Ferrihydrite, Organic Matter, and Montmorillonite. Environmental Science & Emp; Technology, 2008, 42, 2833-2838.	10.0	24
38	Copperâ 'Alumina 'Organic Matter Mixed Systems: Alumina Transformation and Copper Speciation As Revealed by EPR Spectroscopy. Environmental Science & Technology, 2008, 42, 4422-4427.	10.0	7
39	Sorption of lead in soil as a function of pH: a study case in México. Chemosphere, 2004, 57, 1537-1542.	8.2	57
40	Photocatalytic degradation of the herbicide "Paraquat― Chemosphere, 1999, 39, 511-517.	8.2	63
41	Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. , 0, , .		5