Jean-Marc Janot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2712325/publications.pdf

Version: 2024-02-01

186265 233421 2,302 80 28 citations h-index papers

g-index 80 80 80 2463 docs citations times ranked citing authors all docs

45

#	Article	IF	Citations
1	Machine Learning to Improve the Sensing of Biomolecules by Conical Track-Etched Nanopore. Biosensors, 2020, 10, 140.	4.7	20
2	Trackâ€Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods, 2020, 4, 2000366.	8.6	123
3	New pigments based on carminic acid and smectites: A molecular investigation. Dyes and Pigments, 2019, 160, 971-982.	3.7	56
4	Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Advances in Colloid and Interface Science, 2019, 270, 278-292.	14.7	39
5	Impact of polyelectrolytes on lysozyme properties in colloidal dispersions. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110419.	5.0	2
6	Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12578-12585.	8.0	66
7	Going through the wine fining: Intimate dialogue between organics and clays. Colloids and Surfaces B: Biointerfaces, 2018, 166, 79-88.	5.0	16
8	Unexpected ionic transport behavior in hydrophobic and uncharged conical nanopores. Faraday Discussions, 2018, 210, 69-85.	3.2	8
9	Metal alloy solid-state nanopores for single nanoparticle detection. Physical Chemistry Chemical Physics, 2018, 20, 12799-12807.	2.8	16
10	Preparation and characterization of homoionic montmorillonite modified with ionic liquid: Application in dye adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 219-227.	4.7	37
11	When anthraquinone dyes meet pillared montmorillonite: Stability or fading upon exposure to light?. Dyes and Pigments, 2018, 159, 384-394.	3.7	47
12	Unexpected Hard Protein Behavior of BSA on Gold Nanoparticle Caused by Resveratrol. Langmuir, 2018, 34, 8866-8874.	3.5	17
13	Structure and antibacterial activity relationships of native and amyloid fibril lysozyme loaded on layered double hydroxide. Colloids and Surfaces B: Biointerfaces, 2017, 157, 10-17.	5.0	32
14	Mimicking pH-Gated Ionic Channels by Polyelectrolyte Complex Confinement Inside a Single Nanopore. Langmuir, 2017, 33, 3484-3490.	3.5	49
15	Diffusion dynamics of latex nanoparticles coated with ssDNA across a single nanopore. Soft Matter, 2017, 13, 496-502.	2.7	18
16	Large-scale protein/antibody patterning with limiting unspecific adsorption. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	1
17	Functionalization of single solid state nanopores to mimic biological ion channels: A review. Advances in Colloid and Interface Science, 2017, 250, 195-213.	14.7	125
18	Adsorption and photophysical properties of fluorescent dyes over montmorillonite and saponite modified by surfactant. Chemosphere, 2017, 184, 1355-1361.	8.2	67

#	Article	IF	CITATIONS
19	Confined Nystatin Polyenes in Nanopore Induce Biologic Ionic Selectivity. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	2
20	Physico-chemical characterization of lake pigments based on montmorillonite and carminic acid. Applied Clay Science, 2016, 130, 12-17.	5. 2	46
21	Influence of Adsorption on Proteins and Amyloid Detection by Silicon Nitride Nanopore. Langmuir, 2016, 32, 8916-8925.	3. 5	61
22	Fluorescence Quenching of SulfoÂrhodamine Dye over Graphene Oxide and Boron Nitride Nanosheets. European Journal of Inorganic Chemistry, 2016, 2016, 2125-2130.	2.0	25
23	Non-Fluorescence label protein sensing with track-etched nanopore decorated by avidin/biotin system. Electrochimica Acta, 2016, 211, 611-618.	5. 2	29
24	Fast and reversible functionalization of a single nanopore based on layer-by-layer polyelectrolyte self-assembly for tuning current rectification and designing sensors. RSC Advances, 2016, 6, 32228-32233.	3.6	41
25	Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study. Journal of Membrane Biology, 2016, 249, 261-270.	2.1	6
26	Detection of short ssDNA and dsDNA by current-voltage measurements using conical nanopores coated with Al2O3 by atomic layer deposition. Mikrochimica Acta, 2016, 183, 1011-1017.	5.0	25
27	Combining a sensor and a pH-gated nanopore based on an avidin–biotin system. Chemical Communications, 2015, 51, 5994-5997.	4.1	53
28	Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Mikrochimica Acta, 2015, 182, 1819-1826.	5. 0	82
29	Influence of nanopore surface charge and magnesium ion on polyadenosine translocation. Nanotechnology, 2015, 26, 144001.	2.6	11
30	Gold nanoparticles for the bare-eye based and spectrophotometric detection of proteins, polynucleotides and DNA. Mikrochimica Acta, 2015, 182, 1223-1229.	5.0	33
31	lonic selectivity of nystatin A1 confined in nanoporous trackâ€etched polymer membrane. IET Nanobiotechnology, 2014, 8, 138-142.	3.8	3
32	Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio. Soft Matter, 2014, 10, 8413-8419.	2.7	33
33	Enhanced Ionic Transport Mechanism by Gramicidin A Confined Inside Nanopores Tuned by Atomic Layer Deposition. Journal of Physical Chemistry C, 2013, 117, 15306-15315.	3.1	39
34	Slow translocation of polynucleotides and their discrimination by $\hat{l}\pm$ -hemolysin inside a single track-etched nanopore designed by atomic layer deposition. Nanoscale, 2013, 5, 9582.	5.6	64
35	Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter, 2013, 9, 3188.	2.7	42
36	Structure and ionic selectivity of a hybrid polyene/artificial polymer solid state membrane. Soft Matter, 2013, 9, 684-691.	2.7	13

#	Article	IF	Citations
37	Thin phosphatidylcholine films as background surfaces with further possibilities of functionalization for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 101, 189-195.	5.0	6
38	Controlling potassium selectivity and proton blocking in a hybrid biological/solid-state polymer nanoporous membrane. Nanoscale, 2013, 5, 3961.	5.6	24
39	Protein-Repellent Functionalizable Surfaces Based on Covalently Bonded Phospholipids with Phosphorylcholine Head. ACS Symposium Series, 2012, , 677-692.	0.5	0
40	Fluorescence monitoring of trypsin adsorption in layer-by-layer membrane systems. Enzyme and Microbial Technology, 2012, 51, 325-333.	3.2	5
41	Interface of Covalently Bonded Phospholipids with a Phosphorylcholine Head: Characterization, Protein Nonadsorption, and Further Functionalization. Langmuir, 2011, 27, 11536-11544.	3.5	16
42	Stability of the gramicidin-A channel structure in view of nanofiltration: a computational and experimental study. Soft Matter, 2011, 7, 10651.	2.7	6
43	New Bioinspired Membrane Made of a Biological Ion Channel Confined into the Cylindrical Nanopore of a Solid-State Polymer Nano Letters, 2011, 11, 712-716.	9.1	51
44	Novel optical sensors for detection of nitroaromatics based on supported thin flexible poly(methylhydrosiloxane) permeable films functionalised with silole groups. Proceedings of SPIE, 2011, , .	0.8	1
45	Mobility of adsorbed Cry1Aa insecticidal toxin from <i>Bacillus thuringiensis</i> (lt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP). Philosophical Magazine, 2010, 90, 2365-2371.	1.6	7
46	Adsorption of Alexa-Labeled Bt Toxin on Mica, Glass, and Hydrophobized Glass: Study by Normal Scanning Confocal Fluorescence. Biomacromolecules, 2010, 11, 1661-1666.	5.4	24
47	Supported thin flexible polymethylhydrosiloxane permeable films functionalised with silole groups: new approach for detection of nitroaromatics. Journal of Materials Chemistry, 2010, 20, 7100.	6.7	19
48	Highly efficient fluorescent label unquenched by protein interaction to probe the avidin rotational motion. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 204-211.	3.9	15
49	Potentialities of confocal fluorescence for investigating protein adsorption on mica and in ultrafiltration membranes. Journal of Membrane Science, 2006, 284, 198-204.	8.2	22
50	Fluorescent Hydroxyflavone-Zeolite Nanoparticles: Ship-in-a-Bottle Synthesis and Photophysical Properties. ChemPhysChem, 2006, 7, 583-589.	2.1	22
51	One-pot synthesis of fluorescent porous aluminosilicate nanoparticles. Comptes Rendus Chimie, 2005, 8, 1946-1953.	0.5	3
52	Synthesis of New Dipyridylphenylaminosiloles for Highly Emissive Organic Electroluminescent Devices ChemInform, 2005, 36, no.	0.0	0
53	Synthesis of new dipyridylphenylaminosiloles for highly emissive organic electroluminescent devicesDedicated to Professor Robert Corriu on the occasion of his 70th anniversary New Journal of Chemistry, 2004, 28, 1086.	2.8	33
54	[60]Fullerene immobilized in a thin functionalized polypyrrole film. Basic principles for the elaboration of an oxygen sensor. Materials Science and Engineering C, 2002, 21, 125-129.	7.3	20

#	Article	IF	CITATIONS
55	Optical limiting and nonlinear optical absorption properties of C60–polystyrene star polymer films: C60 concentration dependence. Journal of Materials Chemistry, 2002, 12, 2071-2076.	6.7	68
56	Photophysical Properties of the Ground and Triplet State of Four Multiphenylated [70]Fullerene Compounds. ChemPhysChem, 2001, 2, 109-114.	2.1	13
57	Photophysical properties of novel water soluble fullerene derivatives. Chemical Physics Letters, 2001, 350, 198-205.	2.6	21
58	Optical limiting behaviour of the water-soluble C60/ \hat{l}^3 -cyclodextrin complex. Chemical Physics Letters, 2000, 318, 488-495.	2.6	20
59	[60]Fullerene and three [60]fullerene derivatives in membrane model environments. Perkin Transactions II RSC, 2000, , 301-306.	1.1	27
60	Photophysical properties of the fullerene C60 core of a 6-arm polystyrene star. Chemical Physics Letters, 1999, 302, 103-107.	2.6	21
61	Photophysical properties of C60Cl6, C60Ph5Cl and C60Ph5H. Synthetic Metals, 1999, 103, 2407-2410.	3.9	8
62	Photoluminescence properties of fullerene C60 confined in microporous VPI-5 zeolite Synthetic Metals, 1999, 103, 2426-2427.	3.9	5
63	Photophysical properties of C76. Chemical Physics Letters, 1998, 283, 221-226.	2.6	15
64	Evidence of confinement of fullerene C60 in microporous VPI-5 zeolite. Chemical Physics Letters, 1998, 295, 257-265.	2.6	16
65	Photophysical Properties of Three Methanofullerene Derivatives. Chemistry - A European Journal, 1998, 4, 270-278.	3.3	100
66	Synthesis of Copolymers Containing C60, Cyclododecyl, and Sulfonate Groups: Photophysical Behavior of C60in Highly Constrained Microenvironments. Chemistry Letters, 1998, 27, 381-382.	1.3	3
67	Involvement of C60 fullerene monomers and aggregates in the photoconductivity of ultrathin bilayer lipid membranes. Synthetic Metals, 1996, 77, 103-106.	3.9	23
68	Photoinduced electron transfer at an ITO/C60 trapped in a thin polypyrrole film interface. Synthetic Metals, 1996, 82, 129-132.	3.9	6
69	Photophysical properties of three hydrofullerenes. Chemical Physics Letters, 1995, 245, 566-570.	2.6	69
70	Photoinduced electron transfer properties of porous polymer membranes doped with the fullerene C60 associated with phospholipids. Journal of Membrane Science, 1994, 91, 259-264.	8.2	21
71	Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy. Biochemistry, 1992, 31, 3452-3462.	2.5	59
72	The time resolved fluorescence and anisotropy of subtilisins BPN′ and Carlsberg. Biophysical Chemistry, 1991, 41, 277-287.	2.8	14

#	Article	IF	CITATIONS
73	PHOTOINITIATED VECTORIAL TRANSMEMBRANE ELECTRON TRANSFER IN BILAYERS SENSITIZED BY A FACE TO FACE TRIPORPHYRIN ACTING AS A MOLECULAR ELECTRONIC DEVICE. AMPLIFICATION DUE TO IONIC COUPLING. Photochemistry and Photobiology, 1991, 54, 123-126.	2.5	56
74	Inhibition of L-lactate: cytochrome-c reductase (flavocytochrome b2) by product binding to the semiquinone transient. Loss of reactivity towards monoelectronic acceptors. FEBS Journal, 1990, 190, 329-342.	0.2	25
75	l-Lactate cytochrome c reductase: Rapid kinetic studies of electron transfers within the flavocytochrome b2-cytochrome c assembly. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1016, 165-176.	1.0	11
76	Isolation of the flavodehydrogenase domain of Hansenula anomala flavocytochrome b2 after mild proteolysis by an H. anomala proteinase. FEBS Journal, 1989, 182, 67-75.	0.2	15
77	Subtilisin enzymes: A note on time-resolved fluorescence and circular dichroism properties. FEBS Letters, 1989, 250, 389-394.	2.8	10
78	Regulation of dehydrogenases/one-electron transferases by modification of flavin redox potentials. Effect of product binding on semiquinone stabilization in yeast flavocytochrome b2. FEBS Journal, 1986, 155, 491-503.	0.2	37
79	Modification of redox equilibria between heme and flavin within yeast flavocytochrome b2 (l-lactate) Tj ETQq $1\ 1$	0.784314 2.6	rgBT /Overlo
80	Modifications of redox equilibria with semiquinone stabilization upon pyruvate binding to L-lactate cytochrome c oxidoreductase (flavocytochrome b2). Biochemical and Biophysical Research Communications, 1984, 118, 753-759.	2.1	9