
å»°å>1/2 朱

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2712082/publications.pdf Version: 2024-02-01

λ...Ωλ.1/2 FOF+

#	Article	IF	CITATIONS
1	Elevated CO2 levels alleviated toxicity of ZnO nanoparticles to rice and soil bacteria. Science of the Total Environment, 2022, 804, 149822.	8.0	6
2	Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies. Science of the Total Environment, 2022, 810, 152363.	8.0	17
3	Elevated atmospheric CO2 reduces CH4 and N2O emissions under two contrasting rice cultivars from a subtropical paddy field in China. Pedosphere, 2022, 32, 707-717.	4.0	8
4	Field experiments and model simulation based evaluation of rice yield response to projected climate change in Southeastern China. Science of the Total Environment, 2021, 761, 143206.	8.0	23
5	Elevated CO2 concentration modifies the effects of organic fertilizer substitution on rice yield and soil ARGs. Science of the Total Environment, 2021, 754, 141898.	8.0	12
6	Elevated atmospheric CO ₂ reduces yieldâ€scaled N ₂ O fluxes from subtropical rice systems: Six siteâ€years field experiments. Global Change Biology, 2021, 27, 327-339.	9.5	19
7	How do elevated atmosphere CO2 and temperature alter the physiochemical properties of starch granules and rice taste?. Science of the Total Environment, 2021, 766, 142592.	8.0	15
8	Leaf characteristics of rice cultivars with a stronger yield response to projected increases in <scp>CO₂</scp> concentration. Physiologia Plantarum, 2021, 171, 416-423.	5.2	6
9	Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: implications for global nutrition. Journal of the Science of Food and Agriculture, 2021, 101, 3854-3861.	3.5	12
10	Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO2 concentrations. Journal of Hazardous Materials, 2021, 413, 125286.	12.4	30
11	Alterations in Source-Sink Relations Affect Rice Yield Response to Elevated CO2: A Free-Air CO2 Enrichment Study. Frontiers in Plant Science, 2021, 12, 700159.	3.6	11
12	Impact of Elevated CO2 and Reducing the Source-Sink Ratio by Partial Defoliation on Rice Grain Quality – A 3-Year Free-Air CO2 Enrichment Study. Frontiers in Plant Science, 2021, 12, 788104.	3.6	4
13	The potential role of sucrose transport gene expression in the photosynthetic and yield response of rice cultivars to future CO 2 concentration. Physiologia Plantarum, 2020, 168, 218-226.	5.2	18
14	Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments. European Journal of Agronomy, 2020, 112, 125961.	4.1	50
15	Plantâ€mediated effects of elevated CO ₂ and rice cultivars on soil carbon dynamics in a paddy soil. New Phytologist, 2020, 225, 2368-2379.	7.3	16
16	Large losses of ammonium-nitrogen from a rice ecosystem under elevated CO ₂ . Science Advances, 2020, 6, .	10.3	26
17	Changes in microelement availability in a paddy field exposed to long-term atmospheric CO2 enrichment. Journal of Soils and Sediments, 2020, 20, 2439-2445.	3.0	4
18	Distinct fungal successional trajectories following wildfire between soil horizons in a coldâ€ŧemperate forest. New Phytologist, 2020, 227, 572-587.	7.3	41

#	Article	IF	CITATIONS
19	A fast chemical oxidation method for predicting the long-term mineralization of biochar in soils. Science of the Total Environment, 2020, 718, 137390.	8.0	16
20	Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (Oryza sativa L.). Ecological Processes, 2020, 9, .	3.9	11
21	Elevated CO2-induced changes in cytokinin and nitrogen metabolism are associated with different responses in the panicle architecture of two contrasting rice genotypes. Plant Growth Regulation, 2019, 89, 119-129.	3.4	11
22	Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of the Total Environment, 2019, 649, 686-694.	8.0	49
23	Effects of elevated ground-level ozone on paddy soil bacterial community and assembly mechanisms across four years. Science of the Total Environment, 2019, 654, 505-513.	8.0	25
24	Influence of rice cultivars on soil bacterial microbiome under elevated carbon dioxide. Journal of Soils and Sediments, 2019, 19, 2485-2495.	3.0	8
25	Comparison of crop yield sensitivity to ozone between openâ€ŧop chamber and freeâ€air experiments. Global Change Biology, 2018, 24, 2231-2238.	9.5	41
26	Do all leaf photosynthesis parameters of rice acclimate to elevated <scp>CO</scp> ₂ , elevated temperature, and their combination, in <scp>FACE</scp> environments?. Global Change Biology, 2018, 24, 1685-1707.	9.5	68
27	Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition. Science of the Total Environment, 2018, 619-620, 1538-1544.	8.0	18
28	Elevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with rice. PLoS ONE, 2018, 13, e0196439.	2.5	4
29	Carbon dioxide (CO ₂) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Science Advances, 2018, 4, eaaq1012.	10.3	267
30	Divergent Responses of the Diazotrophic Microbiome to Elevated CO2 in Two Rice Cultivars. Frontiers in Microbiology, 2018, 9, 1139.	3.5	19
31	Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. European Journal of Agronomy, 2018, 99, 21-29.	4.1	45
32	Different responses of transgenic Bt rice and conventional rice to elevated ozone concentration. Environmental Science and Pollution Research, 2017, 24, 8352-8362.	5.3	6
33	Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment, 2017, 578, 408-416.	8.0	58
34	Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 2017, 7, 14858.	3.3	41
35	The impact of elevated <scp>CO₂</scp> and temperature on grain quality of rice grown under openâ€eir field conditions. Journal of the Science of Food and Agriculture, 2016, 96, 3658-3667.	3.5	49
36	Elevated atmospheric [<scp>CO</scp> ₂] stimulates sugar accumulation and cellulose degradation rates of rice straw. GCB Bioenergy, 2016, 8, 579-587.	5.6	29

#	Article	IF	CITATIONS
37	Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Science of the Total Environment, 2016, 572, 404-411.	8.0	82
38	Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system. GCB Bioenergy, 2016, 8, 148-159.	5.6	54
39	Divergent responses of methanogenic archaeal communities in two rice cultivars to elevated ground-level O3. Environmental Pollution, 2016, 213, 127-134.	7.5	25
40	An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Scientific Reports, 2015, 5, 12719.	3.3	43
41	Diurnal variation of apoplastic ascorbate in winter wheat leaves in relation to ozone detoxification. Environmental Pollution, 2015, 207, 413-419.	7.5	19
42	Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant. Frontiers in Microbiology, 2015, 6, 855.	3.5	26
43	The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone. Environmental Pollution, 2015, 197, 195-202.	7.5	43
44	Seed vigor of contrasting rice cultivars in response to elevated carbon dioxide. Field Crops Research, 2015, 178, 63-68.	5.1	26
45	Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil, 2015, 392, 27-44.	3.7	58
46	Elevated ozone increases nitrifying and denitrifying enzyme activities in the rhizosphere of wheat after 5Âyears of fumigation. Plant and Soil, 2015, 392, 279-288.	3.7	18
47	Physiological and Biochemical Changes Imposed by CeO ₂ Nanoparticles on Wheat: A Life Cycle Field Study. Environmental Science & Technology, 2015, 49, 11884-11893.	10.0	164
48	Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO 2]. Journal of Experimental Botany, 2014, 65, 6049-6056.	4.8	56
49	Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars. Plant Physiology and Biochemistry, 2014, 82, 183-193.	5.8	26
50	Soil microbial residue dynamics after 3-year elevated O3 exposure are plant species-specific. Plant and Soil, 2014, 376, 139-149.	3.7	18
51	Ozone pollution influences soil carbon and nitrogen sequestration and aggregate composition in paddy soils. Plant and Soil, 2014, 380, 305-313.	3.7	15
52	Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil, 2013, 370, 527-540.	3.7	187
53	Greenhouse gas fluxes and NO release from a Chinese subtropical riceâ€winter wheat rotation system under nitrogen fertilizer management. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 623-638.	3.0	40
54	ldentification of Formateâ€Metabolizing Bacteria in Paddy Soil by DNAâ€Based Stable Isotope Probing. Soil Science Society of America Journal, 2012, 76, 121-129.	2.2	6

#	Article	IF	CITATIONS
55	Influences of free-air CO2 enrichment (FACE), nitrogen fertilizer and crop residue incorporation on CH4 emissions from irrigated rice fields. Nutrient Cycling in Agroecosystems, 2012, 93, 373-385.	2.2	17
56	Annual emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: a case study in the Tai-Lake region, China. Plant and Soil, 2012, 360, 37-53.	3.7	44
57	Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agriculture, Ecosystems and Environment, 2012, 150, 63-71.	5.3	33
58	Elevated CO ₂ Levels Affects the Concentrations of Copper and Cadmium in Crops Grown in Soil Contaminated with Heavy Metals under Fully Open-Air Field Conditions. Environmental Science & Technology, 2011, 45, 6997-7003.	10.0	94
59	Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research, 2011, 116, .	3.3	50
60	Improvements of the ozone dose response functions for predicting the yield loss of wheat due to elevated ozone. J Agricultural Meteorology, 2011, 67, 21-32.	1.5	11
61	Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biology, 2011, 17, 580-591.	9.5	159
62	Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Global Change Biology, 2011, 17, 2697-2706.	9.5	116
63	Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems, 2011, 89, 93-104.	2.2	26
64	A phototrophy-driven microbial food web in a rice soil. Journal of Soils and Sediments, 2011, 11, 301-311.	3.0	15
65	Longâ€Term Field Fertilization Significantly Alters Community Structure of Ammoniaâ€Oxidizing Bacteria rather than Archaea in a Paddy Soil. Soil Science Society of America Journal, 2011, 75, 1431-1439.	2.2	121
66	Modeling methane emissions from paddy rice fields under elevated atmospheric carbon dioxide conditions. Advances in Atmospheric Sciences, 2010, 27, 100-114.	4.3	13
67	CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Science China Earth Sciences, 2010, 53, 1351-1357.	5.2	38
68	Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant and Soil, 2010, 327, 315-330.	3.7	100
69	Nitric oxide emissions from rice-wheat rotation fields in eastern China: effect of fertilization, soil water content, and crop residue. Plant and Soil, 2010, 336, 87-98.	3.7	21
70	Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese riceâ€wheat rotation ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	13
71	Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Functional Plant Biology, 2009, 36, 291.	2.1	52
72	Free-air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil. Plant and Soil, 2009, 324, 317-328.	3.7	19

#	Article	IF	CITATIONS
73	Yield formation of CO2-enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture, Ecosystems and Environment, 2009, 129, 193-200.	5.3	64
74	Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agriculture, Ecosystems and Environment, 2009, 131, 178-184.	5.3	117
75	Seasonal changes in the effects of freeâ€eir CO ₂ enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology, 2008, 14, 1844-1853.	9.5	107
76	Quantifying net ecosystem carbon dioxide exchange of a shortâ€plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	49
77	Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research, 2008, 108, 93-100.	5.1	81
78	Effect of Nitrogen Supply on Carbon Dioxide–Induced Changes in Competition between Rice and Barnyardgrass (Echinochloa crus-galli). Weed Science, 2008, 56, 66-71.	1.5	24
79	Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research, 2007, 100, 189-199.	5.1	44
80	The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 2007, 102, 128-140.	5.1	145
81	Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13, 1989-2007.	9.5	324
82	Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil, 2007, 294, 137-146.	3.7	47
83	Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber. Plant and Soil, 2007, 299, 237-249.	3.7	34
84	Responses of rice growth to copper stress under free-air CO2 enrichment (FACE). Science Bulletin, 2007, 52, 2636-2641.	1.7	13
85	Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research, 2006, 98, 12-19.	5.1	87
86	The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research, 2006, 98, 141-150.	5.1	91
87	Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12, 1717-1732.	9.5	77
88	Influence of the environmental behavior and ecological effect of cropland heavy metal contaminants by CO2 enrichment in atmosphere. Diqiu Huaxue, 2006, 25, 212-212.	0.5	11
89	Ag, Ta, Ru, and Ir enrichment in surface soil: Evidence for land pollution of heavy metal from atmospheric deposition. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	18
90	Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57