
Akinori Nishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27117/publications.pdf Version: 2024-02-01

Δεινορι Νιςμι

#	Article	IF	CITATIONS
1	Subregion-Specific Regulation of Dopamine D1 Receptor Signaling in the Striatum: Implication for L-DOPA-Induced Dyskinesia. Journal of Neuroscience, 2021, 41, 6388-6414.	3.6	2
2	Dopamine D1 receptorâ€expressing neurons activity is essential for locomotor and sensitizing effects of a single injection of cocaine. European Journal of Neuroscience, 2021, 54, 5327-5340.	2.6	2
3	Distinct Role of Dopamine in the PFC and NAc During Exposure to Cocaine-Associated Cues. International Journal of Neuropsychopharmacology, 2021, 24, 988-1001.	2.1	7
4	Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Molecular Psychiatry, 2020, 25, 1229-1244.	7.9	46
5	Adolescent psychosocial stress enhances sensitization to cocaine exposure in genetically vulnerable mice. Neuroscience Research, 2020, 151, 38-45.	1.9	7
6	Sex Differences in Dendritic Spine Formation in the Hippocampus and Animal Behaviors in a Mouse Model of Hyperthyroidism. Frontiers in Cellular Neuroscience, 2020, 14, 268.	3.7	3
7	Voluntary exercise is motivated by ghrelin, possibly related to the central reward circuit. Journal of Endocrinology, 2020, 244, 123-132.	2.6	8
8	Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Structure and Function, 2018, 223, 4275-4291.	2.3	47
9	p11 in Cholinergic Interneurons of the Nucleus Accumbens Is Essential for Dopamine Responses to Rewarding Stimuli. ENeuro, 2018, 5, ENEURO.0332-18.2018.	1.9	17
10	Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opinion on Therapeutic Targets, 2017, 21, 259-272.	3.4	30
11	Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. Journal of Biological Chemistry, 2017, 292, 1462-1476.	3.4	23
12	Neuroprotection by Endoplasmic Reticulum Stress-Induced HRD1 and Chaperones: Possible Therapeutic Targets for Alzheimer's and Parkinson's Disease. Medical Sciences (Basel, Switzerland), 2016, 4, 14.	2.9	21
13	Phosphodiesterase Inhibition and Regulation of Dopaminergic Frontal and Striatal Functioning: Clinical Implications. International Journal of Neuropsychopharmacology, 2016, 19, pyw030.	2.1	37
14	Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT _{1A} Receptors. International Journal of Neuropsychopharmacology, 2016, 19, pyw026.	2.1	9
15	Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal InÂVivo. Neuron, 2016, 89, 550-565.	8.1	81
16	Neuronal circuits and physiological roles of the basal ganglia in terms of transmitters, receptors and related disorders. Journal of Physiological Sciences, 2016, 66, 435-446.	2.1	16
17	Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus. PLoS ONE, 2016, 11, e0147307.	2.5	31
18	Possible involvement of endoplasmic reticulum stress in the pathogenesis of Alzheimer's disease. Endoplasmic Reticulum Stress in Diseases, 2015, 2, .	0.2	5

Akinori Nishi

#	Article	IF	CITATIONS
19	PKA-Dependent Phosphorylation of Ribosomal Protein S6 Does Not Correlate with Translation Efficiency in Striatonigral and Striatopallidal Medium-Sized Spiny Neurons. Journal of Neuroscience, 2015, 35, 4113-4130.	3.6	61
20	Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function. Journal of Neurochemistry, 2015, 132, 677-686.	3.9	24
21	The role of ventral striatal cAMP signaling in stress-induced behaviors. Nature Neuroscience, 2015, 18, 1094-1100.	14.8	80
22	Memory Enhancement by Targeting Cdk5 Regulation of NR2B. Neuron, 2014, 81, 1070-1083.	8.1	116
23	The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: Therapeutic implications of low-dose methylphenidate. Behavioural Brain Research, 2014, 274, 235-242.	2.2	34
24	Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology, 2013, 67, 395-402.	4.1	50
25	Acute effects of resveratrol to enhance cocaine-induced dopamine neurotransmission in the striatum. Neuroscience Letters, 2013, 542, 107-112.	2.1	17
26	Upregulation of the dorsal raphe nucleus-prefrontal cortex serotonin system by chronic treatment with escitalopram in hyposerotonergic Wistar-Kyoto rats. Neuropharmacology, 2013, 72, 169-178.	4.1	25
27	Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons. Neuropharmacology, 2012, 63, 1248-1257.	4.1	18
28	Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology, 2012, 219, 1065-1079.	3.1	52
29	Mechanisms for the Modulation of Dopamine D1 Receptor Signaling in Striatal Neurons. Frontiers in Neuroanatomy, 2011, 5, 43.	1.7	115
30	Advanced Research on Dopamine Signaling to Develop Drugs for the Treatment of Mental Disorders: Biochemical and Behavioral Profiles of Phosphodiesterase Inhibition in Dopaminergic Neurotransmission. Journal of Pharmacological Sciences, 2010, 114, 6-16.	2.5	64
31	Role of adrenoceptors in the regulation of dopamine/DARPPâ€32 signaling in neostriatal neurons. Journal of Neurochemistry, 2010, 113, 1046-1059.	3.9	50
32	Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Molecular Brain, 2009, 2, 19.	2.6	116
33	Role of Calcineurin and Protein Phosphatase-2A in the Regulation of DARPP-32 Dephosphorylation in Neostriatal Neurons. Journal of Neurochemistry, 2008, 72, 2015-2021.	3.9	108
34	A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 2008, 453, 879-884.	27.8	219
35	Cell type–specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nature Neuroscience, 2008, 11, 932-939.	14.8	205
36	Regulation of DARPPâ€32 phosphorylation by three distinct dopamine D ₁ â€like receptor signaling pathways in the neostriatum. Journal of Neurochemistry, 2008, 107, 1014-1026.	3.9	21

Akinori Nishi

#	Article	IF	CITATIONS
37	Repeated administration of a dopamine D1 receptor agonist reverses the increased proportions of striatal dopamine D1 ^{High} and D2 ^{High} receptors in methamphetamineâ€sensitized rats. European Journal of Neuroscience, 2008, 27, 2551-2557.	2.6	21
38	Distinct Roles of PDE4 and PDE10A in the Regulation of cAMP/PKA Signaling in the Striatum. Journal of Neuroscience, 2008, 28, 10460-10471.	3.6	257
39	The B''/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9876-9881.	7.1	99
40	Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56Â subunit. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2979-2984.	7.1	244
41	Differential regulation of the Cdk5-dependent phosphorylation sites of inhibitor-1 and DARPP-32 by depolarization. Journal of Neurochemistry, 2007, 103, 1582-1593.	3.9	4
42	Reversal of methamphetamine-induced behavioral sensitization by repeated administration of a dopamine D1 receptor agonist. Neuropharmacology, 2006, 50, 991-997.	4.1	36
43	Regulation of spinophilin Ser94 phosphorylation in neostriatal neurons involves both DARPP-32-dependent and independent pathways. Journal of Neurochemistry, 2005, 95, 1642-1652.	3.9	9
44	Nicotine Regulates DARPP-32 (Dopamine- and cAMP-Regulated Phosphoprotein of 32 kDa) Phosphorylation at Multiple Sites in Neostriatal Neurons. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 872-878.	2.5	35
45	Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1199-1204.	7.1	128
46	Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. Journal of Neurochemistry, 2004, 90, 1094-1103.	3.9	68
47	Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. Journal of Neurochemistry, 2004, 91, 374-384.	3.9	50
48	DARPP-32: An Integrator of Neurotransmission. Annual Review of Pharmacology and Toxicology, 2004, 44, 269-296.	9.4	639
49	The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology, 2004, 47, 14-23.	4.1	117
50	Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. Journal of Neurochemistry, 2003, 87, 1391-1401.	3.9	54
51	Regulation of DARPP-32 Thr75 phosphorylation by neurotensin in neostriatal neurons: involvement of glutamate signalling. European Journal of Neuroscience, 2003, 18, 1247-1253.	2.6	15
52	Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1322-1327.	7.1	135
53	Neurotensin regulates DARPP-32 Thr34 phosphorylation in neostriatal neurons by activation of dopamine D1-type receptors. Journal of Neurochemistry, 2002, 81, 325-334.	3.9	14
54	Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. Journal of Neurochemistry, 2002, 81, 832-841.	3.9	133

#	Article	IF	CITATIONS
55	Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 2001, 410, 376-380.	27.8	442
56	Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 1999, 402, 669-671.	27.8	538
57	Bidirectional Regulation of DARPP-32 Phosphorylation by Dopamine. Journal of Neuroscience, 1997, 17, 8147-8155.	3.6	368