Baohong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2711155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 387-392.	15.6	972
2	MoS ₂ Formed on Mesoporous Graphene as a Highly Active Catalyst for Hydrogen Evolution. Advanced Functional Materials, 2013, 23, 5326-5333.	7.8	664
3	pHâ€Controlled Delivery of Doxorubicin to Cancer Cells, Based on Small Mesoporous Carbon Nanospheres. Small, 2012, 8, 2715-2720.	5.2	163
4	Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta, 2013, 107, 408-415.	2.9	151
5	Probing Trace Phenols Based on Mediator-Free Alumina Solâ^'Gel-Derived Tyrosinase Biosensor. Analytical Chemistry, 2000, 72, 4707-4712.	3.2	150
6	Single Biomolecule Imaging by Electrochemiluminescence. Journal of the American Chemical Society, 2021, 143, 17910-17914.	6.6	148
7	Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochemistry Communications, 2012, 22, 128-132.	2.3	143
8	Low-cost industrially available molybdenum boride and carbide as "platinum-like―catalysts for the hydrogen evolution reaction in biphasic liquid systems. Physical Chemistry Chemical Physics, 2013, 15, 2847.	1.3	137
9	Multilayer-Assembled Microchip for Enzyme Immobilization as Reactor Toward Low-Level Protein Identification. Analytical Chemistry, 2006, 78, 801-808.	3.2	126
10	Characterization of Immobilization of an Enzyme in a Modified Y Zeolite Matrix and Its Application to an Amperometric Glucose Biosensor. Analytical Chemistry, 1997, 69, 2343-2348.	3.2	120
11	Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods. Analytical Chemistry, 2018, 90, 5512-5520.	3.2	108
12	Stable Microstructured Network for Protein Patterning on a Plastic Microfluidic Channel:  Strategy and Characterization of On-Chip Enzyme Microreactors. Analytical Chemistry, 2004, 76, 6426-6433.	3.2	103
13	Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection. Advanced Functional Materials, 2016, 26, 4016-4025.	7.8	99
14	Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing Interfaces for evaluation of cell surface sialic acid. Biosensors and Bioelectronics, 2015, 68, 329-335.	5.3	93
15	An aptamer-based biosensor for sensitive thrombin detection. Electrochemistry Communications, 2009, 11, 38-40.	2.3	90
16	Specific On-Plate Enrichment of Phosphorylated Peptides for Direct MALDI-TOF MS Analysis. Journal of Proteome Research, 2007, 6, 4763-4769.	1.8	88
17	Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta, 2011, 85, 1174-1179.	2.9	85
18	A sensitive mediator-free tyrosinase biosensor based on an inorganic–organic hybrid titania sol–gel matrix. Analytica Chimica Acta, 2003, 489, 199-206.	2.6	84

#	Article	IF	CITATIONS
19	Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosensors and Bioelectronics, 2015, 66, 438-444.	5.3	84
20	Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Analytica Chimica Acta, 2009, 650, 77-82.	2.6	81
21	Iron Phthalocyanine Decorated Nitrogen-Doped Graphene Biosensing Platform for Real-Time Detection of Nitric Oxide Released from Living Cells. Analytical Chemistry, 2018, 90, 4438-4444.	3.2	81
22	Construction of Dual-Color Probes with Target-Triggered Signal Amplification for <i>In Situ</i> Single-Molecule Imaging of MicroRNA. ACS Nano, 2020, 14, 8116-8125.	7.3	81
23	TiO2-assisted silver enhanced biosensor for kinase activity profiling. Chemical Communications, 2009, , 1508.	2.2	79
24	Recent Progress in Detection and Profiling of Cancer Cellâ€Derived Exosomes. Small, 2021, 17, e2007971.	5.2	79
25	Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection. ACS Applied Materials & amp; Interfaces, 2015, 7, 16767-16774.	4.0	78
26	A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta, 2016, 147, 493-500.	2.9	78
27	Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 283, 119583.	10.8	78
28	A Nanoporous Reactor for Efficient Proteolysis. Chemistry - A European Journal, 2008, 14, 151-157.	1.7	76
29	Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chemical Science, 2013, 4, 3432.	3.7	75
30	Enhanced Protein Digestion through the Confinement of Nanozeolite-Assembled Microchip Reactors. Analytical Chemistry, 2008, 80, 2457-2463.	3.2	74
31	A Phospho-Directed Macroporous Aluminaâ ´´Silica Nanoreactor with Multi-Functions. ACS Nano, 2009, 3, 3656-3662.	7.3	70
32	Titania and Alumina Solâ^'Gel-Derived Microfluidics Enzymatic-Reactors for Peptide Mapping:Â Design, Characterization, and Performance. Journal of Proteome Research, 2004, 3, 1201-1209.	1.8	69
33	Al2O3 sol–gel derived amperometric biosensor for glucose. Analytica Chimica Acta, 1999, 392, 135-141.	2.6	68
34	Gold Nanoparticle Assembly Microfluidic Reactor for Efficient On-line Proteolysis. Molecular and Cellular Proteomics, 2007, 6, 1428-1436.	2.5	67
35	Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Applied Materials & Interfaces, 2018, 10, 15388-15394.	4.0	64
36	Copper-Catalyzed Tyrosine Nitration. Journal of the American Chemical Society, 2011, 133, 19823-19831.	6.6	63

#	Article	IF	CITATIONS
37	An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. Journal of Electroanalytical Chemistry, 2016, 779, 92-98.	1.9	63
38	Interfacial Self-Assembled Functional Nanoparticle Array: A Facile Surface-Enhanced Raman Scattering Sensor for Specific Detection of Trace Analytes. Analytical Chemistry, 2014, 86, 6660-6665.	3.2	62
39	Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Analytica Chimica Acta, 2017, 950, 147-155.	2.6	62
40	TiO ₂ â€Modified Macroporous Silica Foams for Advanced Enrichment of Multiâ€Phosphorylated Peptides. Chemistry - A European Journal, 2009, 15, 2504-2508.	1.7	61
41	Controlled Nanozeolite-Assembled Electrode: Remarkable Enzyme-Immobilization Ability and High Sensitivity as Biosensor. Chemistry - A European Journal, 2006, 12, 1137-1143.	1.7	60
42	Electrochemistry and biosensing of glucose oxidase based on mesoporous carbons with different spatially ordered dimensions. Talanta, 2009, 78, 705-710.	2.9	60
43	Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochemistry Communications, 2010, 12, 258-261.	2.3	59
44	High-Resolution and Universal Visualization of Latent Fingerprints Based on Aptamer-Functionalized Core–Shell Nanoparticles with Embedded SERS Reporters. ACS Applied Materials & Interfaces, 2016, 8, 14389-14395.	4.0	58
45	Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis. Analytical Chemistry, 2009, 81, 5749-5756.	3.2	57
46	Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta, 2012, 99, 256-261.	2.9	57
47	Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Analytica Chimica Acta, 2004, 519, 31-38.	2.6	56
48	Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Lab on A Chip, 2004, 4, 588.	3.1	54
49	Surface Plasmon Coupling Electrochemiluminescence Immunosensor Based on Polymer Dots and AuNPs for Ultrasensitive Detection of Pancreatic Cancer Exosomes. Analytical Chemistry, 2022, 94, 837-846.	3.2	53
50	Efficient Proteolysis System: A Nanozeoliteâ€Đerived Microreactor. Small, 2006, 2, 1170-1173.	5.2	52
51	Assembly-Controlled Biocompatible Interface on a Microchip: Strategy to Highly Efficient Proteolysis. Chemistry - A European Journal, 2006, 12, 6585-6591.	1.7	52
52	Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing. Analyst, The, 2015, 140, 134-139.	1.7	51
53	Simultaneous and ultrasensitive detection of multiple microRNAs by single-molecule fluorescence imaging. Chemical Science, 2020, 11, 3812-3819.	3.7	51
54	Kinetics of Proteolytic Reactions in Nanoporous Materials. Journal of Proteome Research, 2009, 8, 4685-4692.	1.8	47

#	Article	IF	CITATIONS
55	Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1715-1723.	1.7	47
56	Ultrathin Alumina Solâ^'Gel-Derived Films:Â Allowing Direct Detection of the Liver Fibrosis Markers by Capacitance Measurement. Analytical Chemistry, 2003, 75, 4578-4584.	3.2	46
57	TiO ₂ Printed Aluminum Foil: Single-Use Film for a Laser Desorption/Ionization Target Plate. Analytical Chemistry, 2009, 81, 1177-1183.	3.2	46
58	A Biomimetic Plasmonic Nanoreactor for Reliable Metabolite Detection. Advanced Science, 2020, 7, 1903730.	5.6	46
59	Facile preparation of N-doped mesocellular graphene foam from sludge flocs for highly efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 15171-15176.	5.2	44
60	Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 10088-10094.	1.3	43
61	Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochemistry Communications, 2008, 10, 447-450.	2.3	42
62	On-demand quantitative SERS bioassays facilitated by surface-tethered ratiometric probes. Chemical Science, 2018, 9, 8089-8093.	3.7	41
63	Electrochemical Aspects of Electrospray and Laser Desorption/Ionization for Mass Spectrometry. Annual Review of Analytical Chemistry, 2010, 3, 231-254.	2.8	40
64	Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay. Analytical Chemistry, 2016, 88, 6767-6772.	3.2	40
65	Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chemical Science, 2018, 9, 2212-2221.	3.7	40
66	A Smart Glycolâ€Ðirected Nanodevice from Rationally Designed Macroporous Materials. Chemistry - A European Journal, 2010, 16, 822-828.	1.7	38
67	TiO ₂ -Assisted Laser Desorption/Ionization Mass Spectrometry for Rapid Profiling of Candidate Metabolite Biomarkers from Antimicrobial-Resistant Bacteria. Analytical Chemistry, 2018, 90, 3863-3870.	3.2	38
68	MALDI Inâ€Source Photooxidation Reactions for Online Peptide Tagging. Angewandte Chemie - International Edition, 2008, 47, 2646-2648.	7.2	37
69	Strategy for Allosteric Analysis Based on Protein-Patterned Stationary Phase in Microfluidic Chip. Journal of Proteome Research, 2005, 4, 2154-2160.	1.8	35
70	Functionalized Periodic Mesoporous Organosilicas for Enhanced and Selective Peptide Enrichment. Langmuir, 2010, 26, 7444-7450.	1.6	35
71	Quantitative Label-Free and Real-Time Surface-Enhanced Raman Scattering Monitoring of Reaction Kinetics Using Self-Assembled Bifunctional Nanoparticle Arrays. Analytical Chemistry, 2015, 87, 8702-8708.	3.2	34
72	Rapid Enrichment and Sensitive Detection of Multiple Metal Ions Enabled by Macroporous Graphene Foam. Analytical Chemistry, 2017, 89, 11758-11764.	3.2	34

#	Article	IF	CITATIONS
73	Advances in signal amplification strategies for electrochemical biosensing. Current Opinion in Electrochemistry, 2018, 12, 5-12.	2.5	34
74	Mass Spectrometry Imaging of Mass Tag Immunoassay Enables the Quantitative Profiling of Biomarkers from Dozens of Exosomes. Analytical Chemistry, 2021, 93, 709-714.	3.2	34
75	TiO 2 sol-gel derived amperometric biosensor for H 2 O 2 on the electropolymerized phenazine methosulfate modified electrode. Analytical and Bioanalytical Chemistry, 2002, 374, 1261-1266.	1.9	33
76	High-efficiency nano/micro-reactors for protein analysis. RSC Advances, 2015, 5, 1331-1342.	1.7	33
77	Mass Barcode Signal Amplification for Multiplex Allergy Diagnosis by MALDI-MS. Analytical Chemistry, 2016, 88, 6184-6189.	3.2	33
78	Identification of pathogenic bacteria in human blood using IgG-modified Fe3O4 magnetic beads as a sorbent and MALDI-TOF MS for profiling. Mikrochimica Acta, 2018, 185, 542.	2.5	33
79	Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules. Analytical Chemistry, 2018, 90, 9315-9321.	3.2	33
80	Self-Assembled Au Nanoparticle Arrays for Precise Metabolic Assay of Cerebrospinal Fluid. ACS Applied Materials & Interfaces, 2021, 13, 4886-4893.	4.0	33
81	Electrocatalysis of both oxygen reduction and water oxidation using a cost-effective three-dimensional MnO ₂ /graphene/carbon nanotube. RSC Advances, 2015, 5, 26710-26715.	1.7	32
82	Mo ₂ C/Reducedâ€Grapheneâ€Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemElectroChem, 2016, 3, 2110-2115.	1.7	31
83	Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Mikrochimica Acta, 2009, 167, 109-116.	2.5	30
84	Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Analytical Chemistry, 2016, 88, 11504-11512.	3.2	30
85	Bacterial Whole Cell Typing by Mass Spectra Pattern Matching with Bootstrapping Assessment. Analytical Chemistry, 2017, 89, 12556-12561.	3.2	28
86	Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosensors and Bioelectronics, 2022, 197, 113778.	5.3	28
87	An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a β-type zeolite modified electrode. Fresenius' Journal of Analytical Chemistry, 2000, 367, 539-544.	1.5	27
88	Electrocatalytic oxidation of NADH based on bicontinuous gyroidal mesoporous carbon with low overpotential. Electrochemistry Communications, 2009, 11, 227-230.	2.3	27
89	Controlling the specific enrichment of multi-phosphorylated peptides on oxide materials: aluminium foil as a target plate for laser desorption ionization mass spectrometry. Chemical Science, 2010, 1, 374.	3.7	27
90	Direct electrochemistry of myoglobin based on bicontinuous gyroidal mesoporous carbon matrix. Electrochemistry Communications, 2008, 10, 1864-1867.	2.3	26

#	Article	IF	CITATIONS
91	MOF-derived RuCoP nanoparticles-embedded nitrogen-doped polyhedron carbon composite for enhanced water splitting in alkaline media. Journal of Colloid and Interface Science, 2022, 616, 803-812.	5.0	26
92	Nanozeolite-assembled interface towards sensitive biosensing. Electrochemistry Communications, 2007, 9, 1525-1529.	2.3	25
93	A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chemical Communications, 2009, , 5006.	2.2	25
94	Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Mikrochimica Acta, 2011, 175, 87-95.	2.5	25
95	A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor. Journal of Electroanalytical Chemistry, 2016, 781, 265-271.	1.9	25
96	Single-Molecule Fluorescence Imaging for Ultrasensitive DNA Methyltransferase Activity Measurement and Inhibitor Screening. Analytical Chemistry, 2019, 91, 9500-9507.	3.2	25
97	SERS and MALDI-TOF MS based plasma exosome profiling for rapid detection of osteosarcoma. Analyst, The, 2021, 146, 6496-6505.	1.7	25
98	Periodic Mesoporous Organosilica as a Multifunctional Nanodevice for Large-Scale Characterization of Membrane Proteins. Analytical Chemistry, 2012, 84, 5809-5815.	3.2	24
99	A label-free fluorescent molecular switch for a DNA hybridization assay utilizing a G-quadruplex-selective auramine O. Chemical Communications, 2015, 51, 8622-8625.	2.2	24
100	Ultrasensitive profiling of multiple biomarkers from single cells by signal amplification mass spectrometry. Chemical Communications, 2018, 54, 9659-9662.	2.2	24
101	Trypsin entrapped in poly(diallyldimethylammonium chloride) silica solâ€gel microreactor coupled to matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1257-1264.	0.7	23
102	In-source photocatalytic reduction of disulfide bonds during laser desorption ionization. Chemical Communications, 2008, , 6357.	2.2	23
103	Nanomaterial-assisted laser desorption ionization for mass spectrometry-based biomedical analysis. Nanomedicine, 2010, 5, 1641-1652.	1.7	23
104	Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel. Lab on A Chip, 2010, 10, 2887.	3.1	23
105	Small Mesoporous Silica Nanoparticles as Carriers for Enhanced Photodynamic Therapy. Chemistry - an Asian Journal, 2011, 6, 2332-2338.	1.7	23
106	Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Mikrochimica Acta, 2009, 167, 75-79.	2.5	22
107	Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Analytical Chemistry, 2020, 92, 8051-8057.	3.2	22
108	Lab in a tube: Isolation, extraction, and isothermal amplification detection of exosomal long noncoding RNA of gastric cancer. Talanta, 2021, 225, 122090.	2.9	22

#	Article	IF	CITATIONS
109	Iodide-modified Ag nanoparticles coupled with DSN-Assisted cycling amplification for label-free and ultrasensitive SERS detection of MicroRNA-21. Talanta, 2021, 235, 122728.	2.9	22
110	Label-free Aptasensor based on Electrodeposition of Gold Nanoparticles on Graphene and Its Application in the Quantification of Adenosine Triphosphate. Electrochimica Acta, 2015, 172, 88-93.	2.6	21
111	Ambient ionization based on mesoporous graphene coated paper for therapeutic drug monitoring. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1015-1016, 142-149.	1.2	21
112	Three-Dimensional Plasmonic Trap Array for Ultrasensitive Surface-Enhanced Raman Scattering Analysis of Single Cells. Analytical Chemistry, 2018, 90, 10394-10399.	3.2	21
113	A Novel Capacitive Immunosensor Using Electropolymerized Insulating Poly (oâ€phenylenediamine) Film on a Glass Carbon Electrode for Probing Transferrin. Analytical Letters, 2004, 37, 2283-2301.	1.0	20
114	Enhancement of proteolysis through the silica-gel-derived microfluidic reactor. Proteomics, 2007, 7, 1373-1378.	1.3	20
115	Direct SERS tracking of a chemical reaction at a single 13Ânm gold nanoparticle. Chemical Science, 2019, 10, 1741-1745.	3.7	20
116	Nanoporous silica coupled MALDI-TOF MS detection of Bence-Jones proteins in human urine for diagnosis of multiple myeloma. Talanta, 2019, 200, 288-292.	2.9	20
117	Electrochemiluminescence microscopy: From single objects to living cells. Current Opinion in Electrochemistry, 2022, 35, 101096.	2.5	20
118	Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy. Talanta, 2016, 152, 196-202.	2.9	19
119	Photocatalytic Redox Reactions for Inâ€Source Peptide Fragmentation. Chemistry - A European Journal, 2009, 15, 6711-6717.	1.7	18
120	Electrochemical detection of the activities of thrombin and its inhibitor. Electrochemistry Communications, 2012, 16, 53-56.	2.3	18
121	A Sensitive Microchipâ€Based Immunosensor for Electrochemical Detection of Low‣evel Biomarker S100B. Electroanalysis, 2013, 25, 1050-1055.	1.5	18
122	Polydopamine Grafted Porous Graphene as Biocompatible Nanoreactor for Efficient Identification of Membrane Proteins. ACS Applied Materials & Interfaces, 2016, 8, 6363-6370.	4.0	18
123	Plasmonic Colloidosome-Based Multifunctional Platform for Bacterial Identification and Antimicrobial Resistance Detection. Analytical Chemistry, 2019, 91, 14220-14225.	3.2	17
124	In situ ratiometric SERS imaging of intracellular protease activity for subtype discrimination of human breast cancer. Biosensors and Bioelectronics, 2022, 207, 114194.	5.3	17
125	Time-resolved electrochromic properties of MoO3 thin films electrodeposited on a flexible substrate. Journal of Solid State Electrochemistry, 2003, 7, 244-248.	1.2	16
126	Characterization of efficient proteolysis by trypsin loaded macroporous silica. Molecular BioSystems, 2011, 7, 2890.	2.9	16

#	Article	IF	CITATIONS
127	Multifunctional Nanoreactor for Comprehensive Characterization of Membrane Proteins Based on Surface Functionalized Mesoporous Foams. Analytical Chemistry, 2015, 87, 9360-9367.	3.2	16
128	A Rational Designed Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobe for Quantitatively Visualizing Endogenous Hydrogen Sulfide in Single Living Cells. ACS Sensors, 2022, 7, 893-899.	4.0	16
129	Microfluidic enzymatic reactors for proteome research. Analytical and Bioanalytical Chemistry, 2008, 390, 227-229.	1.9	15
130	Bicontinuous gyroidal mesoporous carbon matrix for facilitating protein electrochemical and bioelectrocatalytic performances. Talanta, 2011, 83, 1507-1514.	2.9	15
131	On-Chip Mesoporous Functionalized Magnetic Microspheres for Protein Sequencing by Extended Bottom-up Mass Spectrometry. Analytical Chemistry, 2016, 88, 1775-1784.	3.2	15
132	Selective assembly of specifically charged proteins on an electrochemically switched surface. New Journal of Chemistry, 2005, 29, 847.	1.4	14
133	Electrochemistry of Nanozeolite-Immobilized Cytochrome c in Aqueous and Nonaqueous Solutions. Langmuir, 2010, 26, 9076-9081.	1.6	14
134	Coupling shell-isolated nanoparticle enhanced Raman spectroscopy with paper chromatography for multi-components on-site analysis. Talanta, 2017, 162, 52-56.	2.9	14
135	MALDI-TOF Characterization of Protein Expression Mutation During Morphological Changes of Bacteria Under the Impact of Antibiotics. Analytical Chemistry, 2019, 91, 2352-2359.	3.2	14
136	An Ordered Mesoporous Carbon Nanofiber Array for the Sensitive Electrochemical Detection of Malachite Green. ChemElectroChem, 2020, 7, 659-664.	1.7	14
137	Sensitive determination of fluphenazine at a dodecanethiol self-assembled monolayer-modified gold electrode, and its electrocatalysis to phenylephrine. Mikrochimica Acta, 2007, 159, 157-163.	2.5	13
138	Sensitively probing the cofactor redox species and photo-induced electron transfer of wild-type and pheophytin-replaced photosynthetic proteins reconstituted in self-assembled monolayers. Journal of Solid State Electrochemistry, 2007, 11, 1689-1695.	1.2	13
139	Electrochemical Reactions and Ionization Processes. European Journal of Mass Spectrometry, 2010, 16, 341-349.	0.5	13
140	An aptamer–SWNT biosensor for sensitive detection of protein via mediated signal transduction. Electrochemistry Communications, 2011, 13, 707-710.	2.3	13
141	Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres. Mikrochimica Acta, 2012, 178, 277-283.	2.5	13
142	Efficient Drug Metabolism Strategy Based on Microsome–Mesoporous Organosilica Nanoreactors. Analytical Chemistry, 2014, 86, 10870-10876.	3.2	13
143	A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 16649-16655.	4.0	13
144	On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes. Journal of the American Society for Mass Spectrometry, 2018, 29, 1538-1545.	1.2	13

#	Article	IF	CITATIONS
145	Microfluidic filter device coupled mass spectrometry for rapid bacterial antimicrobial resistance analysis. Analyst, The, 2021, 146, 515-520.	1.7	13
146	Studies on Microbial Biosensor for DL-Phenylalanine and Its Dynamic Response Process. Analytical Letters, 1996, 29, 1497-1515.	1.0	12
147	Ga ₂ O ₃ photocatalyzed onâ€line tagging of cysteine to facilitate peptide mass fingerprinting. Proteomics, 2011, 11, 3501-3509.	1.3	12
148	Synthesis of micro-sized shell-isolated 3D plasmonic superstructures for in situ single-particle SERS monitoring. Nanoscale, 2016, 8, 7871-7875.	2.8	12
149	Photochemical Bionanoreactor for Efficient Visible-Light-Driven in Vitro Drug Metabolism. Analytical Chemistry, 2017, 89, 7365-7372.	3.2	11
150	Sensitive electrochemical aptasensor for detecting EpCAM with silica nanoparticles and quantum dots for signal amplification. Journal of Electroanalytical Chemistry, 2020, 856, 113655.	1.9	11
151	An electrochemiluminescence sensor for 17β-estradiol detection based on resonance energy transfer in α-FeOOH@CdS/Ag NCs. Talanta, 2021, 221, 121479.	2.9	11
152	Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites. Talanta, 2022, 243, 123382.	2.9	11
153	AN AMPEROMETRIC BIOSENSOR FOR HYDROGEN PEROXIDASE BASED ON THE CO-IMMOBILIZATION OF CATALASE AND METHYLENE BLUE IN AN AL2O3 SOL-GEL MODIFIED ELECTRODE. Analytical Letters, 2001, 34, 687-699.	1.0	10
154	Ambient in situ analysis and imaging of both hydrophilic and hydrophobic thin layer chromatography plates by electrostatic spray ionization mass spectrometry. RSC Advances, 2015, 5, 75395-75402.	1.7	10
155	In-tip nanoreactors for cancer cells proteome profiling. Analytica Chimica Acta, 2017, 949, 43-52.	2.6	10
156	Plasmonic Colloidosome-Based Single Cell Detector: A Strategy for Individual Cell Secretion Sensing. Analytical Chemistry, 2019, 91, 2260-2265.	3.2	10
157	Quantitative Single-Particle Fluorescence Imaging Elucidates Semiconductor Shell Influence on Ag@TiO2 Photocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 7680-7687.	4.0	10
158	Sensitive voltammetric detection of clomipramine at 16-mercapto-hexadecanoic acid self-assembled monolayer modified gold electrode. Mikrochimica Acta, 2008, 161, 149-155.	2.5	9
159	Amino-functionalized macroporous silica for efficient tryptic digestion in acidic solutions. Proteomics, 2013, 13, 3117-3123.	1.3	9
160	Target induced interfacial self-assembly of nanoparticles: A new platform for reproducible quantification of copper ions. Talanta, 2016, 158, 254-261.	2.9	8
161	Nanoscale tracking plasmon-driven photocatalysis in individual nanojunctions by vibrational spectroscopy. Nanoscale, 2018, 10, 21742-21747.	2.8	8
162	Transpeptidation-mediated single-particle imaging assay for sensitive and specific detection of sortase with dark-field optical microscopy. Biosensors and Bioelectronics, 2021, 178, 113003.	5.3	8

#	Article	IF	CITATIONS
163	In Situ Single-Molecule Imaging of MicroRNAs in Switchable Migrating Cells under Biomimetic Confinement. Analytical Chemistry, 2022, 94, 4030-4038.	3.2	8
164	Sensitive and fast beverage/fruit antioxidant evaluation by TiO ₂ â€Au/graphene nanocomposites coupled with MALDIâ€MS. Rapid Communications in Mass Spectrometry, 2016, 30, 128-132.	0.7	7
165	Electrostatic Spray Ionization from 384-Well Microtiter Plates for Mass Spectrometry Analysis-Based Enzyme Assay and Drug Metabolism Screening. Analytical Chemistry, 2017, 89, 5983-5990.	3.2	7
166	Aptamer entrapment in microfluidic channel using oneâ€step solâ€gel process, in view of the integration of a new selective extraction phase for labâ€onâ€aâ€chip. Electrophoresis, 2017, 38, 2456-2461.	1.3	7
167	Magnetic-Immuno-Loop-Mediated Isothermal Amplification Based on DNA Encapsulating Liposome for the Ultrasensitive Detection of P-glycoprotein. Scientific Reports, 2017, 7, 9312.	1.6	7
168	Ultrasensitive amplification-free detection of protein kinase based on catalyzed assembly and enumeration of gold nanoparticles. Chemical Communications, 2019, 55, 2505-2508.	2.2	7
169	Mesoporous Silica as Sorbents and Enzymatic Nanoreactors for Microbial Membrane Proteomics. ACS Applied Materials & Interfaces, 2021, 13, 11571-11578.	4.0	7
170	Highly efficient sub-nanometer RuxCuyP2 nanoclusters designed for hydrogen evolution under alkaline media. Journal of Colloid and Interface Science, 2021, 602, 222-231.	5.0	7
171	Sensitively Detecting Recombinant Hirudin Variant-2 with Capacitive Immunoassay Based on Self-Assembled Monolayers. Analytical Letters, 2003, 36, 2571-2583.	1.0	6
172	Recent advances in proteolysis and peptide/protein separation by chromatographic strategies. Science China Chemistry, 2010, 53, 685-694.	4.2	6
173	Dual-modality loop-mediated isothermal amplification for pretreatment-free detection of Septin9 methylated DNA in colorectal cancer. Mikrochimica Acta, 2021, 188, 307.	2.5	6
174	Assessment of bacterial viability by laser desorption ionization mass spectrometry for antimicrobial susceptibility testing. Talanta, 2021, 233, 122535.	2.9	6
175	Proteins in Mesoporous Silicates. ACS Symposium Series, 2008, , 49-60.	0.5	5
176	TiO2-functionalized mesoporous materials for sensitive analysis of multi-phosphopeptides. Science China Chemistry, 2011, 54, 1327-1333.	4.2	5
177	Optical Sensing Strategies for Probing Single-Cell Secretion. ACS Sensors, 2022, 7, 1779-1790.	4.0	5
178	Synthetic Alloys: Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection (Adv. Funct. Mater. 22/2016). Advanced Functional Materials, 2016, 26, 3750-3750.	7.8	3
179	Direct MALDI-TOF profiling of gingival crevicular fluid sediments for periodontitis diagnosis. Talanta, 2021, 225, 121956.	2.9	3
180	Peptide-tight ESI/MSn analysis with segment of liquid chromatography effluent. Analytical Methods, 2013, 5, 3371.	1.3	2

#	Article	IF	CITATIONS
181	Amphiphilic mesoporous graphene mediated efficient photoionic cell. Carbon, 2018, 128, 134-137.	5.4	2
182	Water-in-oil microcompartments for the study of biomimetic drug metabolism. Journal of Colloid and Interface Science, 2020, 569, 378-385.	5.0	2
183	Janus graphene hybrids: 2D monodispersed gold nanoarrays on graphene with controlled structure and high stability. , 2014, , .		1
184	Selfâ€aspiration sampling extractive electrospray ionization mass spectrometry (EESlâ€MS) for highâ€throughput analysis of liquid samples. Rapid Communications in Mass Spectrometry, 2016, 30, 56-61.	0.7	1
185	Designed macroporous nanoreactors for mass spectrometry based analysis of membrane proteins. , 2015, , .		0
186	Porous silica enhanced proteolysis during Off-Gel separation for efficient protein identification. Talanta, 2015, 144, 1182-1188.	2.9	0
187	Mesoporous Silica for Triphase Nucleophilic Substitution Reactions. Chimia, 2018, 72, 514-517.	0.3	0
188	Microfluidic freeâ€flow paper electrochromatography for continuous separation of glycans. ChemElectroChem, 0, , .	1.7	0
189	Amphiphilic Mesoporous Foam-Stabilized Pickering Emulsions as Versatile Nanoreactors for In Vitro Drug Metabolism. ACS Applied Nano Materials, 2022, 5, 9920-9928.	2.4	0