
Laurence Despres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2711036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Demographic inferences and climatic niche modelling shed light on the evolutionary history of the emblematic coldâ€adapted Apollo butterfly at regional scale. Molecular Ecology, 2022, 31, 448-466.	2.0	8
2	Population decline at distribution margins: Assessing extinction risk in the last glacial relictual but still functional metapopulation of a European butterfly. Diversity and Distributions, 2022, 28, 271-290.	1.9	11
3	Genomic Shifts, Phenotypic Clines, and Fitness Costs Associated With Cold Tolerance in the Asian Tiger Mosquito. Molecular Biology and Evolution, 2022, 39, .	3.5	5
4	The evolutionary dynamics of biological invasions: A multiâ€approach perspective. Evolutionary Applications, 2021, 14, 1463-1484.	1.5	48
5	Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nature Communications, 2020, 11, 1153.	5.8	31
6	Landscape does matter: Disentangling founder effects from natural and humanâ€aided postâ€introduction dispersal during an ongoing biological invasion. Journal of Animal Ecology, 2020, 89, 2027-2042.	1.3	14
7	Genetic, morphological and ecological variation across a sharp hybrid zone between two alpine butterfly species. Evolutionary Applications, 2020, 13, 1435-1450.	1.5	13
8	Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Science of the Total Environment, 2020, 724, 137800.	3.9	62
9	Cold adaptation across the elevation gradient in an alpine butterfly species complex. Ecological Entomology, 2020, 45, 997-1003.	1.1	3
10	Cold adaptation in the Asian tiger mosquito's native range precedes its invasion success in temperate regions. Evolution; International Journal of Organic Evolution, 2019, 73, 1793-1808.	1.1	28
11	Predicting the success of an invader: Niche shift versus niche conservatism. Ecology and Evolution, 2019, 9, 12658-12675.	0.8	20
12	One, two or more species? Mitonuclear discordance and species delimitation. Molecular Ecology, 2019, 28, 3845-3847.	2.0	54
13	Speciation with gene flow: Evidence from a complex of alpine butterflies (<i>Coenonympha</i> ,) Tj ETQq1 1 0.78	84314 rgB ⁻ 0.8	Г /Qverlock
14	Unravelling the invasion history of the Asian tiger mosquito in Europe. Molecular Ecology, 2019, 28, 2360-2377.	2.0	82
15	Inferring the biogeography and demographic history of an endangered butterfly in Europe from multilocus markers. Biological Journal of the Linnean Society, 2019, 126, 95-113.	0.7	10
16	Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. Infection, Genetics and Evolution, 2018, 58, 145-156.	1.0	29
17	At the Origin of a Worldwide Invasion: Unraveling the Genetic Makeup of the Caribbean Bridgehead Populations of the Dengue Vector Aedes aegypti. Genome Biology and Evolution, 2018, 10, 56-71.	1.1	24
18	Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites and Vectors, 2018, 11, 121.	1.0	29

LAURENCE DESPRES

#	Article	IF	CITATIONS
19	Larval Exposure to the Bacterial Insecticide Bti Enhances Dengue Virus Susceptibility of Adult Aedes aegypti Mosquitoes. Insects, 2018, 9, 193.	1.0	24
20	Elevational gradient and human effects on butterfly species richness in the French Alps. Ecology and Evolution, 2017, 7, 3672-3681.	0.8	23
21	Alkaline phosphatases are involved in the response of <scp><i>A</i></scp> <i>edes aegypti</i> larvae to intoxication with <scp><i>B</i></scp> <i>acillus thuringiensis</i> subsp. <i>israelensis</i> â€ <scp>C</scp> ry toxins. Environmental Microbiology, 2016, 18, 1022-1036.	1.8	17
22	Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Infection, Genetics and Evolution, 2016, 44, 218-227.	1.0	17
23	Hybridization promotes speciation in <i>Coenonympha</i> butterflies. Molecular Ecology, 2015, 24, 6209-6222.	2.0	46
24	The genetic architecture of a complex trait: Resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti. Infection, Genetics and Evolution, 2015, 35, 204-213.	1.0	17
25	Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biology Letters, 2014, 10, 20140716.	1.0	24
26	Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. BMC Genomics, 2014, 15, 926.	1.2	28
27	Persistence and Recycling of Bioinsecticidal Bacillus thuringiensis subsp. israelensis Spores in Contrasting Environments: Evidence from Field Monitoring and Laboratory Experiments. Microbial Ecology, 2014, 67, 576-586.	1.4	21
28	Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. Journal of Invertebrate Pathology, 2014, 119, 50-53.	1.5	24
29	INCREASE IN LARVAL GUT PROTEOLYTIC ACTIVITIES AND <i>Bti</i> RESISTANCE IN THE DENGUE FEVER MOSQUITO. Archives of Insect Biochemistry and Physiology, 2013, 82, 71-83.	0.6	27
30	Investigating the genetics of B ti resistance using m RNA tag sequencing: application on laboratory strains and natural populations of the dengue vector A edes aegypti. Evolutionary Applications, 2013, 6, 1012-1027.	1.5	9
31	Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 894-900.	0.8	37
32	Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island. PLoS ONE, 2013, 8, e77857.	1.1	24
33	Decreased Toxicity of Bacillus thuringiensis subsp. israelensis to Mosquito Larvae after Contact with Leaf Litter. Applied and Environmental Microbiology, 2012, 78, 5189-5195.	1.4	24
34	Fate of Bacillus thuringiensis subsp. israelensis in the Field: Evidence for Spore Recycling and Differential Persistence of Toxins in Leaf Litter. Applied and Environmental Microbiology, 2012, 78, 8362-8367.	1.4	40
35	Plant Insecticidal Toxins in Ecological Networks. Toxins, 2012, 4, 228-243.	1.5	75
36	In Silico Fingerprinting (ISIF): A User-Friendly In Silico AFLP Program. Methods in Molecular Biology, 2012, 888, 55-64.	0.4	2

LAURENCE DESPRES

#	Article	IF	CITATIONS
37	Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. Journal of Invertebrate Pathology, 2012, 109, 201-208.	1.5	27
38	Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics, 2012, 13, 248.	1.2	59
39	Two Methods to Easily Obtain Nucleotide Sequences from AFLP Loci of Interest. Methods in Molecular Biology, 2012, 888, 91-108.	0.4	6
40	Specialized nursery pollination mutualisms as evolutionary traps stabilized by antagonistic traits. Journal of Theoretical Biology, 2012, 296, 65-83.	0.8	5
41	Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Molecular Ecology, 2012, 21, 1672-1686.	2.0	28
42	Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology, 2011, 20, 1184-1194.	1.1	51
43	Floral phenotypic plasticity as a buffering mechanism in the globeflower–fly mutualism. Plant Ecology, 2011, 212, 1205-1212.	0.7	3
44	Persistence of <i>Bacillus thuringiensis israelensis</i> (<i>Bti</i>) in the environment induces resistance to multiple <i>Bti</i> toxins in mosquitoes. Pest Management Science, 2011, 67, 122-128.	1.7	95
45	Amplified fragment length homoplasy: in silico analysis for model and non-model species. BMC Genomics, 2010, 11, 287.	1.2	24
46	The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytologist, 2010, 188, 451-463.	3.5	45
47	Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Molecular Ecology, 2010, 19, 325-337.	2.0	50
48	Adaptive radiation through phenological shift: the importance of the temporal niche in species diversification. Ecological Entomology, 2009, 34, 81-89.	1.1	11
49	Plant chemical defence: a partner control mechanism stabilising plant - seed-eating pollinator mutualisms. BMC Evolutionary Biology, 2009, 9, 261.	3.2	22
50	Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evolutionary Biology, 2009, 9, 288.	3.2	43
51	Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations. BMC Genomics, 2009, 10, 551.	1.2	32
52	The effect of climate on masting in the European larch and on its specific seed predators. Oecologia, 2009, 159, 527-537.	0.9	34
53	Stability of floral specialization in <i>Trollius europaeus</i> in contrasting ecological environments. Journal of Evolutionary Biology, 2009, 22, 1183-1192.	0.8	11
54	Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Molecular Ecology, 2008, 11, 2337-2347.	2.0	125

LAURENCE DESPRES

#	Article	IF	CITATIONS
55	A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection. BMC Genomics, 2008, 9, 459.	1.2	15
56	Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family. Molecular Biology and Evolution, 2008, 25, 859-868.	3.5	120
57	Long Lasting Persistence of Bacillus thuringiensis Subsp. israelensis (Bti) in Mosquito Natural Habitats. PLoS ONE, 2008, 3, e3432.	1.1	63
58	The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution, 2007, 22, 298-307.	4.2	704
59	Plant Chemical Defense Induced by a Seed-Eating Pollinator Mutualist. Journal of Chemical Ecology, 2007, 33, 2078-2089.	0.9	17
60	Geographic and within-population variation in the globeflower–globeflower fly interaction: the costs and benefits of rearing pollinators' larvae. Oecologia, 2007, 151, 240-250.	0.9	16
61	Geographical and within-population variation in the globeflower–globeflower fly interaction: the costs and benefits of rearing pollinator's larvae. Oecologia, 2007, 153, 69-79.	0.9	8
62	Patterns ofÂresource exploitation inÂfourÂcoexisting globeflower fly species (Chiastocheta sp.). Acta Oecologica, 2006, 29, 233-240.	0.5	19
63	Linking patterns and processes of species diversification in the cone flies Strobilomyia (Diptera:) Tj ETQq1 1 0.78	84314 rgB 1.2	T /Qyerlock 1
64	The role of competition in adaptive radiation: a field study on sequentially ovipositing host-specific seed predators. Journal of Animal Ecology, 2004, 73, 109-116.	1.3	24
65	Sex and pollen: the role of males in stabilising a plant-seed eater pollinating mutualism. Oecologia, 2003, 135, 60-66.	0.9	17
66	Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. Molecular Phylogenetics and Evolution, 2003, 27, 185-196.	1.2	154
67	Evolution of Mutualism Between Globeflowers and their Pollinating Flies. Journal of Theoretical Biology, 2002, 217, 219-234.	0.8	47
68	Speciation in the Globeflower Fly Chiastocheta spp. (Diptera: Anthomyiidae) in Relation to Host Plant Species, Biogeography, and Morphology. Molecular Phylogenetics and Evolution, 2002, 22, 258-268.	1.2	38
69	Mapping of Resistance to Vegetable Polyphenols among Aedes Taxa (Diptera, Culicidae) on a Molecular Phylogeny. Molecular Phylogenetics and Evolution, 2001, 19, 317-325.	1.2	19
70	Variation in predation costs with Chiastocheta egg number on Trollius europaeus : how many seeds to pay for pollination?. Ecological Entomology, 2001, 26, 56-62.	1.1	25
71	Oviposition by mutualistic seed-parasitic pollinators and its effects on annual fitness of single- and multi-flowered host plants. Oecologia, 1999, 120, 427-436.	0.9	40
72	Systematics of the Genus Capra Inferred from Mitochondrial DNA Sequence Data. Molecular Phylogenetics and Evolution, 1999, 13, 504-510.	1.2	95

#	Article	IF	CITATIONS
73	Mitochondrial genes of Schistosoma mansoni. Parasitology, 1999, 119, 303-313.	0.7	33
74	Obligate mutualism between Trollius europaeus and its seed-parasite pollinators Chiastocheta flies in the Alps. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 789-796.	0.8	33
75	Molecular characterization of mitochondrial DNA provides evidence for the recent introduction of Schistosoma mansoni into America. Molecular and Biochemical Parasitology, 1993, 60, 221-229.	0.5	57
76	Conserved secondary structures in the ITS2 of trematode pre-rRNA. FEBS Letters, 1993, 316, 247-252.	1.3	36
77	Molecular evidence linking hominid evolution to recent radiation of schistosomes (Platyhelminthes:) Tj ETQq1 1	0.784314 1.2	rgBT /Overlo