Maiyong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2711018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethylene glycol assisted self-template conversion approach to synthesize hollow NiS microspheres for a high performance all-solid-state supercapacitor. Materials Chemistry Frontiers, 2022, 6, 203-212.	5.9	9
2	<i>In situ</i> formation of MnO@N-doped carbon for asymmetric supercapacitor with enhanced cycling performance. Materials Chemistry Frontiers, 2022, 6, 491-502.	5.9	7
3	A sequential process to synthesize Fe ₃ O ₄ @MnO ₂ hollow nanospheres for high performance supercapacitors. Materials Chemistry Frontiers, 2022, 6, 1938-1947.	5.9	8
4	A review of synthetic approaches to hollow nanostructures. Materials Chemistry Frontiers, 2021, 5, 2552-2587.	5.9	36
5	Glycerol-assisted tuning of the phase and morphology of iron oxide nanostructures for supercapacitor electrode materials. Materials Chemistry Frontiers, 2021, 5, 2758-2770.	5.9	17
6	Polymer Reactor with Alterable Substrate Channeling for the Formation of Cascade/Non-cascade-Switchable Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2039-2049.	3.7	4
7	Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 69-87.	3.7	8
8	Artificial Reactor with Alterable Tandem Channeling for the Formation of Self creened Catalytic Ability. Chemical Engineering and Technology, 2020, 43, 317-328.	1.5	1
9	Hierarchical Polymer Composites as Smart Reactor for Formulating Simple/Tandem-Commutative Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4394-4407.	3.7	3
10	Recent progress in the syntheses and applications of multishelled hollow nanostructures. Materials Chemistry Frontiers, 2020, 4, 1105-1149.	5.9	55
11	Silver Selective Electrode Based on Hybrid Mesoporous Silica (MCMâ€41) Modified Material. Electroanalysis, 2019, 31, 1562-1569.	2.9	3
12	Cobalt Oxide Nanoparticles Embedded in Nâ€Doped Porous Carbon as an Efficient Electrode for Supercapacitor. Energy Technology, 2019, 7, 1800963.	3.8	30
13	Dopamine-assisted preparation of Fe3O4@MnO2 yolk@shell microspheres for improved pseudocapacitive performance. Electrochimica Acta, 2019, 317, 628-637.	5.2	27
14	Core@shell β-FeOOH@polypyrolle derived N, S-codoped Fe3O4@N-doped porous carbon nanococoons for high performance supercapacitors. Applied Surface Science, 2019, 480, 582-592.	6.1	30
15	Nanoreactor with Core–Shell Architectures Used as Spatiotemporal Compartments for "Undisturbed―Tandem Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1235-1242.	3.7	6
16	One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage. Journal of Energy Chemistry, 2019, 28, 1-8.	12.9	41
17	Antimicrobial and antioxidant capacity of glucosamine-zinc(II) complex via non-enzymatic browning reaction. Food Science and Biotechnology, 2018, 27, 1-7.	2.6	25
18	Smart synthesis of silver nanoparticles supported in porous polybenzoxazine nanocomposites via a main-chain type benzoxazine resin. Chinese Chemical Letters, 2018, 29, 1367-1371.	9.0	13

MAIYONG ZHU

#	Article	IF	CITATIONS
19	Smart Tandem Catalyst Developed with Sundew's Predation Strategy, Capable of Catching, Decomposing and Assimilating Preys. ChemCatChem, 2018, 10, 5231-5241.	3.7	13
20	Polymer Composite Reactor with "Autonomous―Access for Aquatically Self-Governed Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1511-1519.	3.7	0
21	Facile Fabrication of Mn2+ Doped Magnetite Microspheres as Efficient Electrode Material for Supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 542-551.	3.7	24
22	Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2 composite as effective adsorbent for removal of heavy metal contaminants from water. Fibers and Polymers, 2017, 18, 22-32.	2.1	32
23	Commercialized Benzoxazine Resin-Derived Porous Carbon as high Performance Electrode Materials for Supercapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1423-1429.	3.7	12
24	"Online/Offline―Shiftable Imprinted Polymer Nanoreactor with Selective/Nonselective-Switchable Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 21-30.	3.7	1
25	One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 632-639.	3.7	24
26	Switchable polymer reactor composed of mussel-inspired polymer that contains Au nanoparticles. RSC Advances, 2016, 6, 42869-42875.	3.6	12
27	Hydrothermal Synthesis of Akaganeite Nanorods and Their Supercapacitance Property. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 982-985.	3.7	3
28	Polymer Nanoreactor with "Mobility-Recalling―Domains for On/Off Switchable Catalysis. ChemCatChem, 2015, 7, 814-818.	3.7	8
29	Catalytic polymer reactor with "self-sorting―domains for hierarchical catalysis. RSC Advances, 2015, 5, 34985-34991.	3.6	7
30	Facile solvothermal synthesis of porous ZnFe ₂ O ₄ microspheres for capacitive pseudocapacitors. RSC Advances, 2015, 5, 39270-39277.	3.6	88
31	An autonomic and "off–on–off―switchable polymer microreactor. RSC Advances, 2015, 5, 5598-5603.	3.6	12
32	A Catalytic and Shapeâ€Memory Polymer Reactor. Advanced Functional Materials, 2014, 24, 4996-5001.	14.9	36
33	An "active―and self-switchable nanoreactor. Polymer Chemistry, 2014, 5, 562-566.	3.9	15
34	Titanium catalyst with the molecular imprinting of substrate for selective photocatalysis. Journal of the Chinese Advanced Materials Society, 2014, 2, 71-81.	0.7	7
35	"Key-vsLock―Like Polymer Reactor Made of Molecularly Imprinted Polymer Containing Metal Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 890-897.	3.7	11
36	Self-switchable catalysis by a nature-inspired polymer nanoreactor containing Pt nanoparticles. Journal of Materials Chemistry A, 2014, 2, 6834-6839.	10.3	27

MAIYONG ZHU

#	Article	IF	CITATIONS
37	Hematite nanoparticle-templated hollow carbon nanonets supported palladium nanoparticles: preparation and application as efficient recyclable catalysts. Catalysis Science and Technology, 2013, 3, 952-961.	4.1	32
38	Degradation of methylene blue with H2O2 over a cupric oxide nanosheet catalyst. Chinese Journal of Catalysis, 2013, 34, 2125-2129.	14.0	26
39	Facile Fabrication of Hierarchically Porous CuFe ₂ O ₄ Nanospheres with Enhanced Capacitance Property. ACS Applied Materials & Interfaces, 2013, 5, 6030-6037.	8.0	206
40	In situ synthesis of silver nanostructures on magnetic Fe ₃ O ₄ @C core–shell nanocomposites and their application in catalytic reduction reactions. Journal of Materials Chemistry A, 2013, 1, 2118-2125.	10.3	262
41	High catalytic activity of CuO nanorods for oxidation of cyclohexene to 2-cyclohexene-1-one. Catalysis Science and Technology, 2012, 2, 82-84.	4.1	63
42	Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 16276-16285.	3.1	207
43	Synthesis of Porous Fe ₃ O ₄ Nanospheres and Its Application for the Catalytic Degradation of Xylenol Orange. Journal of Physical Chemistry C, 2011, 115, 18923-18934.	3.1	287
44	Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe ₃ O ₄ @C Nanocomposites: Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions. Journal of Physical Chemistry C, 2011, 115, 24743-24749.	3.1	183
45	Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale, 2011, 3, 2748.	5.6	222
46	Dual-Responsive Bilayer Reactor Capable of Non-Tandem/Tandem Adjustable Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	3.7	0
47	Polymer Catalyst with Photo-Mediated Catalytic Ability, by Virtue of Cis/Trans-Alterable Conformation. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	3.7	0
48	Polymer Catalyst with Double "Zipper" Conformations for Formatting Catalytic Substrate-Sieving Ability. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0