Xianmin Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2710760/xianmin-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 246
 4,555
 35
 58

 papers
 citations
 h-index
 g-index

 284
 5,646
 2.9
 5.46

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
246	A structure optimization for integrated binary reconfigurable true time delay lines. <i>Optics Communications</i> , 2022 , 502, 127439	2	
245	Photonics-Aided 300B00 GHz Wireless Communications Beyond 100 Gbps. <i>Springer Series in Optical Sciences</i> , 2022 , 467-472	0.5	
244	A Non-Uniform Travelling-Wave Current Source Model for Designing OAM Antenna: Theory, Analysis and Application. <i>IEEE Access</i> , 2022 , 10, 47499-47508	3.5	1
243	Orbital Angular Momentum Based Structured Radio Beams and its Applications 2021 , 269-293		O
242	Long Distance Broadband Fiber Optical Beamforming Over 120 km. <i>IEEE Access</i> , 2021 , 9, 152182-15218	7 3.5	1
241	A Fan Ring Resonator Antenna For Generating High Gain PSOAM Mode-Group With Ultrahigh Equivalent Order 2021 ,		1
240	Erratum to A Compact Pattern Reconfiguration Antenna Based on Multimode Plane Spiral OAM [Feb 21 1168-1172]. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 3628-3628	4.9	
239	Photonic generation of terahertz dual-chirp waveforms ranging from 364 to 392 GHz. <i>Optics Express</i> , 2021 , 29, 19240-19246	3.3	2
238	An integrated optical beamforming network for two-dimensional phased array radar. <i>Optics Communications</i> , 2021 , 489, 126809	2	5
237	A Compact Pattern Reconfiguration Antenna Based on Multimode Plane Spiral OA. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 1168-1172	4.9	8
236	60 Gbit/s PAM-4 wireless transmission in the 310 GHz band with nonlinearity tolerant signal processing. <i>Optics Communications</i> , 2021 , 492, 126988	2	1
235	Tbit/s Multi-Dimensional Multiplexing THz-Over-Fiber for 6G Wireless Communication. <i>Journal of Lightwave Technology</i> , 2021 , 39, 5783-5790	4	6
234	Photonic heterodyne generation of phase-coded terahertz signals. <i>Optics Communications</i> , 2021 , 499, 127253	2	
233	Experimental Study of Plane Spiral OAM Mode-Group Based MIMO Communications. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	4.9	3
232	Approaching the Fundamental Limit of Orbital-Angular-Momentum Multiplexing Through a Hologram Metasurface. <i>Physical Review Applied</i> , 2021 , 16,	4.3	4
231	Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. <i>Applied Physics Reviews</i> , 2020 , 7, 021403	17.3	17
230	2 B00 Gbit/s Line Rate PS-64QAM-OFDM THz Photonic-Wireless Transmission. <i>Journal of Lightwave Technology</i> , 2020 , 38, 4715-4721	4	24

(2018-2020)

229	Performance Analysis of Plane Spiral OAM Mode-Group Based MIMO System. <i>IEEE Communications Letters</i> , 2020 , 24, 1414-1418	3.8	14
228	26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals. <i>APL Photonics</i> , 2020 , 5, 056105	5.2	14
227	Structure Radio Beam Construction in Azimuthal Domain. <i>IEEE Access</i> , 2020 , 8, 9395-9402	3.5	8
226	Nonlinearity-aware optoelectronic terahertz discrete multitone signal transmission with a zero-bias diode. <i>Optics Letters</i> , 2020 , 45, 5045-5048	3	3
225	A general analytical method for suppressing the third-order intermodulation in microwave photonic link based on dual-parallel Machizehnder modulator. <i>Optics Communications</i> , 2020 , 458, 12481	8 ²	2
224	Orbital Angular Momentum Mode-Group Based Spatial Field Digital Modulation: Coding Scheme and Performance Analysis 2020 ,		5
223	Direct Generation of OAM Mode-Group and Its Application in LoS-MIMO System. <i>IEEE Communications Letters</i> , 2020 , 24, 2628-2631	3.8	7
222	Photonic radiofrequency receiver utilizing a phase modulator and a tunable single sideband optoelectronic oscillator. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 2196-2201	1.2	
221	Photonic Generation and De-Chirping of Broadband THz Linear-Frequency-Modulated Signals. <i>IEEE Photonics Technology Letters</i> , 2019 , 31, 881-884	2.2	5
220	Generating dual-polarized orbital angular momentum radio beams with dual-bowtie cell. <i>AIP Advances</i> , 2019 , 9, 115004	1.5	Ο
219	Local property study for arbitrary polarised OAM beam. <i>IET Microwaves, Antennas and Propagation</i> , 2019 , 13, 1846-1853	1.6	
218	Low Probability of Intercept Communication Based on Structured Radio Beams Using Machine Learning. <i>IEEE Access</i> , 2019 , 7, 169946-169952	3.5	4
217	Coherently demodulated orbital angular momentum shift keying system using a CNN-based image identifier as demodulator. <i>Optics Communications</i> , 2019 , 435, 367-373	2	6
216	3D Visible-Light Invisibility Cloak. <i>Advanced Science</i> , 2018 , 5, 1800056	13.6	20
215	Channelized amplification of RF signal based on actively mode locked fiber laser. <i>Optics Communications</i> , 2018 , 421, 46-49	2	2
214	Transforming Surface Wave to Propagating OAM Vortex Wave via Flat Dispersive Metasurface in Radio Frequency. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 172-175	3.8	29
213	Reconfigurable OAM antenna based on sub-wavelength phase modulation structure. <i>IET Microwaves, Antennas and Propagation</i> , 2018 , 12, 354-359	1.6	7
212	100 Gbit/s THz Photonic Wireless Transmission in the 350-GHz Band With Extended Reach. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1064-1067	2.2	41

211	Realization of Beam Steering Based on Plane Spiral Orbital Angular Momentum Wave. <i>IEEE Transactions on Antennas and Propagation</i> , 2018 , 66, 1352-1358	4.9	34
210	Modulation Fading in Temporal Talbot Effect. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1376-1379	2.2	3
209	Photonics-enabled compressive sensing with spectral encoding using an incoherent broadband source. <i>Optics Letters</i> , 2018 , 43, 330-333	3	3
208	An improved photonic analog-to-digital conversion scheme using Mach Zehnder modulators with identical half-wave voltages. <i>Optics Communications</i> , 2018 , 425, 157-160	2	11
207	A Unified System With Integrated Generation of High-Speed Communication and High-Resolution Sensing Signals Based on THz Photonics. <i>Journal of Lightwave Technology</i> , 2018 , 36, 4549-4556	4	14
206	Transformation of OAM Waves to Plane Spiral OAM Waves Based on Gradient-Index Meta-Surface 2018 ,		3
205	Dual-Band THz Photonic Pulses Enabling Synthetic mm-Scale Range Resolution. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1760-1763	2.2	6
204	Realization of Structured Electromagnetic Waves Based on Plane Spiral Orbital Angular Momentum Waves Using Circular Cylindrical Conformal Microstrip Antenna Array 2018 ,		4
203	Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum. Journal of Applied Physics, 2018 , 124, 164907	2.5	11
202	Photonic Vector Signal Generation Based on OEO and Optical Coherent QPSK Modulation. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1711-1714	2.2	5
201	Super-mode noise suppression for coupled optoelectronic oscillator with optoelectronic hybrid filter. <i>Optics Communications</i> , 2018 , 426, 138-141	2	1
200	Time-Division Multiplexed Vector Signal Synthesizer Based on Continuous PTS. <i>IEEE Photonics Technology Letters</i> , 2018 , 30, 1020-1023	2.2	2
199	Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 385-388	3.8	33
198	Generation of Plane Spiral OAM Waves Using Traveling-Wave Circular Slot Antenna. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 8-11	3.8	69
197	Four-OAM-Mode Antenna With Traveling-Wave Ring-Slot Structure. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 194-197	3.8	60
196	Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 1308-1318	9.6	129
195	An Orbital Angular Momentum-Based In-Band Full-Duplex Communication System and Its Mode Selection. <i>IEEE Communications Letters</i> , 2017 , 21, 1183-1186	3.8	15
194	A Two-Dimensional LiNbO3 Photonic E-Field Sensor Using Inclined Dipole Antennas. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 2203-2206	3.8	4

Impact of 3rd-order dispersion on photonic time-stretch system. Optics Communications, 2017, 402, 206-210 193 Single-frequency computational imaging using OAM-carrying electromagnetic wave. Journal of 192 2.5 26 Applied Physics, 2017, 121, 184506 Single-pixel imaging based on compressive sensing with spectral-domain optical mixing. Optics 191 2 9 Communications, 2017, 402, 119-122 Photonic Generation of Dual-Chirp Waveforms With Improved Time-Bandwidth Product. IEEE 190 2.2 33 Photonics Technology Letters, 2017, 29, 1253-1256 Spurious-Free Dynamic Range of the Photonic Time-Stretch System. IEEE Photonics Technology 189 2.2 5 Letters. 2017. 29. 794-797 Frequency stability optimization of an OEO using phase-locked-loop and self-injection-locking. 188 2 Optics Communications, 2017, 386, 27-30 On the undesired frequency chirping in photonic time-stretch systems. Optics Communications, 187 2 2017, 405, 192-196 186 . IEEE Microwave and Wireless Components Letters, 2017, 27, 757-759 2.6 21 Design of X-Cut and Z-Cut Lithium Niobate Whispering-Gallery-Mode Disk-Resonators With High 185 1.8 2 Quality Factors. IEEE Photonics Journal, 2017, 9, 1-8 Non-Line-of-Sight Channel Performance of Plane Spiral Orbital Angular Momentum MIMO Systems. 184 3.5 13 IEEE Access, 2017, 5, 25377-25384 Photonic generation of linear frequency modulated terahertz pulses in the 350 GHz band with 183 1 beyond 40 GHz bandwidth 2017, Rotational Doppler effect based on the radio orbital angular momentum wave 2017, 182 Generation of plane spiral orbital angular momentum microwave with ring dielectric resonator 181 8 antenna 2017, Grouping plane spiral electromagnetic waves for structured rf beams 2017, 180 Generating wideband orbital angular momentum beams using helical antenna 2017, 179 2 Experimental generation of linearly chirped 350 GHz band pulses with a bandwidth beyond 178 12 60 GHz. Optics Letters, 2017, 42, 5242-5245 Frequency-dependent noise figure analysis of continuous photonic time-stretch system. Applied 1.7 177 1 Optics, 2017, 56, 8246-8251 Highly sensitive demodulation of a vibration-induced phase shift based on a low-noise OEO. Optics 176 4 Letters, 2017, 42, 4052-4054

175	All-positive-coefficient microwave photonic filter with rectangular response. <i>Optics Letters</i> , 2017 , 42, 3012-3015	3	12
174	Harmonics analysis of the photonic time stretch system. <i>Applied Optics</i> , 2016 , 55, 7222-8	0.2	5
173	Plane spiral orbital angular momentum wave and its applications 2016,		7
172	Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method. <i>Scientific Reports</i> , 2016 , 6, 36846	4.9	9
171	Corrections to Transmission Characteristics of a Twisted Radio Wave based on Circular Traveling-wave[[Apr 15 1530-1536]. <i>IEEE Transactions on Antennas and Propagation</i> , 2016 , 64, 4581-458	31 ^{4.9}	
170	The Capacity Gain of Orbital Angular Momentum Based Multiple-Input-Multiple-Output System. <i>Scientific Reports</i> , 2016 , 6, 25418	4.9	52
169	Concealing arbitrary objects remotely with multi-folded transformation optics. <i>Light: Science and Applications</i> , 2016 , 5, e16177	16.7	44
168	Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition. <i>Optics Express</i> , 2016 , 24, 5423-5430	3.3	5
167	Orbital Angular Momentum-Based Communications With Partial Arc Sampling Receiving. <i>IEEE Communications Letters</i> , 2016 , 1-1	3.8	20
166	Half-mode substrate integrated waveguide antenna for generating multiple orbital angular momentum modes. <i>Electronics Letters</i> , 2016 , 52, 684-686	1.1	32
165	Photonic-assisted time-interleaved ADC based on optical delay line. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 015704	1.7	6
164	. IEEE Photonics Technology Letters, 2016 , 28, 841-844	2.2	9
163	Graphene induced mode bifurcation at low input power. Carbon, 2016, 98, 463-467	10.4	21
162	Loss induced amplification of graphene plasmons. <i>Optics Letters</i> , 2016 , 41, 681-4	3	33
161	A Flat-Lensed Spiral Phase Plate Based on Phase-Shifting Surface for Generation of Millimeter-Wave OAM Beam. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2016 , 15, 1156-1158	3.8	80
160	Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter. <i>Optics Communications</i> , 2016 , 373, 65-69	2	3
159	Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme. <i>IET Microwaves, Antennas and Propagation</i> , 2016 , 10, 1043-1047	1.6	17
158	Generation and propagation characteristics of electromagnetic vortices in radio frequency. <i>Photonics Research</i> , 2016 , 4, B9	6	10

157	Exploring THz band for high speed wireless communications 2016,		4
156	Photonic compressive sensing for analog-to-information conversion with a delay-line based microwave photonic filter. <i>Optics Communications</i> , 2016 , 371, 83-88	2	O
155	Free-Space Radio Communication Employing OAM Multiplexing Based on Rotman Lens. <i>IEEE Microwave and Wireless Components Letters</i> , 2016 , 26, 738-740	2.6	27
154	A Novel Scheme of Microwave Generation Based on Heterodyne Phase Locking of an OEO. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 2637-2640	2.2	2
153	A graphene-based all-fiber electro-absorption modulator. <i>Journal of Optics (India)</i> , 2016 , 45, 337-342	1.3	5
152	Analysis of compressive sensing with optical mixing using a spatial light modulator. <i>Applied Optics</i> , 2015 , 54, 1894-9	1.7	7
151	Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture. <i>Optics Express</i> , 2015 , 23, 12251-7	3.3	39
150	Characterization of the photonic generation of phase-coded RF signals based on pulse shaping and frequency-to-time mapping 2015 , 54, 3956		4
149	Compressive sensing with a microwave photonic filter. <i>Optics Communications</i> , 2015 , 338, 428-432	2	7
148	Plane spiral orbital angular momentum electromagnetic wave 2015 ,		16
147	Orbital angular momentum antenna using dielectric resonator 2015 ,		
	Groteat arrigatal momentam arresma asing dictective resonator 2015 ,		4
146	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 947-950	2.2	7
146	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE</i>	2.2 4·9	
, i	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 947-950 Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode		7
145	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 947-950 Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas. <i>Scientific Reports</i> , 2015 , 5, 10148		7
145	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 947-950 Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas. <i>Scientific Reports</i> , 2015 , 5, 10148 2015 ,		7 144 3
145 144 143	A Wideband Tunable Optoelectronic Oscillator Based on a Spectral-Subtraction-Induced MPF. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 947-950 Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas. <i>Scientific Reports</i> , 2015 , 5, 10148 2015 , Photonics-assisted compressive sensing for sparse signal acquisition 2015 , Orbital angular momentum mode multiplexing with half-mode substrate integrated waveguide		7 144 3

139	Optoelectronic oscillator with phase-shifted fiber Bragg grating. Optics Communications, 2014, 319, 117	7- <u>1</u> 20	31
138	Photonic generation of chirped microwave signals with high time-bandwidth product. <i>Optics Communications</i> , 2014 , 316, 106-110	2	17
137	Recent developments in graphene-based optical modulators. Frontiers of Optoelectronics, 2014, 7, 277-	2 9 28	12
136	HilbertHuang Transform Time-Frequency Analysis in \$phi \$-OTDR Distributed Sensor. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 2403-2406	2.2	28
135	Analyses of Whispering Gallery Modes in Circular Resonators by Transmission Line Theory. <i>Journal of Lightwave Technology</i> , 2014 , 32, 2345-2352	4	1
134	Relaxed dispersion requirement in the generation of chirped RF signals based on frequency-to-time mapping. <i>Optics Communications</i> , 2014 , 331, 278-281	2	5
133	A SIMPLE UNIDIRECTIONAL OPTICAL INVISIBILITY CLOAK MADE OF WATER. <i>Progress in Electromagnetics Research</i> , 2014 , 146, 1-5	3.8	3
132	High-sensitivity temperature sensor based on an optoelectronic oscillator. <i>Applied Optics</i> , 2014 , 53, 508	34 . .7	48
131	Space-frequency analysis with parallel computing in a phase-sensitive optical time-domain reflectometer distributed sensor. <i>Applied Optics</i> , 2014 , 53, 6586-90	1.7	12
130	Compressive sensing in a photonic link with optical integration. <i>Optics Letters</i> , 2014 , 39, 2222-4	3	24
129	Spurious-free dynamic range improvement in a photonic time-stretched analog-to-digital converter based on third-order predistortion. <i>Photonics Research</i> , 2014 , 2, 97	6	6
128	Orbital Angular Momentum Generation Using a Circular Wire Loop Antenna 2014 ,		5
127	A Graphene-Enhanced Fiber-Optic Phase Modulator With Large Linear Dynamic Range. <i>IEEE Photonics Technology Letters</i> , 2014 , 26, 1867-1870	2.2	20
126	Photonic Microwave Up-Conversion of Vector Signals Based on an Optoelectronic Oscillator. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 1758-1761	2.2	20
125	Ray-optics cloaking devices for large objects in incoherent natural light. <i>Nature Communications</i> , 2013 , 4, 2652	17.4	112
124	Photonic generation of frequency quadrupling signal for millimeter-wave communication. <i>Optics Communications</i> , 2013 , 304, 71-74	2	18
123	CMOS-Compatible Long-Range Dielectric-Loaded Plasmonic Waveguides. <i>Journal of Lightwave Technology</i> , 2013 , 31, 3361-3367	4	11
122	Tunable multi-tap microwave photonic filter with complex coefficients using a dual-parallel Mach Z ehnder modulator. <i>Journal of Modern Optics</i> , 2013 , 60, 1069-1073	1.1	

Sub-Nyquist Sampled Analog-to-Digital Conversion Based on Photonic Time Stretch and Compressive Sensing With Optical Random Mixing. <i>Journal of Lightwave Technology</i> , 2013 , 31, 3395-34	10 1	22	
A Tunable Optoelectronic Oscillator Based on a Dispersion-Induced Microwave Photonic Filter. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 921-924	2.2	17	
All-optical modulator with long range surface plasmon resonance. <i>Optics and Laser Technology</i> , 2013 , 49, 316-319	4.2	11	
Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions. <i>Optics Communications</i> , 2013 , 292, 53-56	2		
Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor. <i>Applied Optics</i> , 2013 , 52, 8581-5	1.7	13	
Highly efficient photonic-crystal splitters based on one-way waveguiding. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 173	1.7	21	
An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 035406	1.7	4	
Microwave spectrum sensing based on photonic time stretch and compressive sampling. <i>Optics Letters</i> , 2013 , 38, 136-8	3	39	
A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb. <i>Optics Communications</i> , 2012 , 285, 2311-2315	2	17	
Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. <i>Physical Review Letters</i> , 2012 , 109, 223903	7.4	79	
A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Nonuniformly Spaced Photonic Microwave Delay-Line Filter. <i>Journal of Lightwave Technology</i> , 2012 ,	4	12	
Novel Demodulation Method for Fiber-Optic Interferometers Based on \$pi/2\$ Phase Modulation. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1981-1983	2.2	2	
A frequency-doubling optoelectronic oscillator based on phase modulator 2012,		1	
A Wideband Frequency-Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBG and Wavelength Tuning of Laser. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 73-75	2.2	29	
Instantaneous microwave frequency measurement with a uniform resolution and improved dynamic range 2012 ,		2	
High-Resolution Multiple Microwave Frequency Measurement Based on Stimulated Brillouin Scattering. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1115-1117	2.2	36	
Photonic analog-to-digital converter based on the robust symmetrical number system. <i>Optics Communications</i> , 2012 , 285, 4966-4970	2	4	
Four-tap microwave photonic filter with tunable center frequency and reconfigurable transfer function. <i>Microwave and Optical Technology Letters</i> , 2012 , 54, 1740-1743	1.2		
	Compressive Sensing With Optical Random Mixing. Journal of Lightwave Technology, 2013, 31, 3395-34 A Tunable Optoelectronic Oscillator Based on a Dispersion-Induced Microwave Photonic Filter. IEEE Photonics Technology Letters, 2013, 25, 921-924 All-optical modulator with long range surface plasmon resonance. Optics and Laser Technology, 2013, 49, 316-319 Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions. Optics Communications, 2013, 292, 53-56 Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor. Applied Optics, 2013, 52, 8581-5 Highly efficient photonic-crystal splitters based on one-way waveguiding. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 173 An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering. Journal of Optics (United Kingdom), 2013, 15, 035406 Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38, 136-8 A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb. Optics Communications, 2012, 285, 2311-2315 Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Physical Review Letters, 2012, 109, 223903 A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Nonuniformly Spaced Photonic Microwave Delay-Line Filter. Journal of Lightwave Technology, 2012, Novel Demodulation Method for Fiber-Optic Interferometers Based on Spi/2\$ Phase Modulation. IEEE Photonics Technology Letters, 2012, 24, 1981-1983 A frequency-doubling optoelectronic oscillator based on phase modulator 2012, A Wideband Frequency-Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBG and Wavelength Tuning of Laser. IEEE Photonics Technology Letters, 2012, 24, 1115-1117 Photonic analog-to-digital converter	A Tunable Optoelectronic Oscillator Based on a Dispersion-Induced Microwave Photonic Filter. IEEE Photonics Technology Letters, 2013, 25, 921-924 All-optical modulator with long range surface plasmon resonance. Optics and Laser Technology, 2013, 49, 316-319 Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions. Optics Communications, 2013, 292, 53-56 Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor. Applied Optics, 2013, 52, 8581-5 Lighly efficient photonic-crystal splitters based on one-way waveguiding. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 173 An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering. Journal of Optics (United Kingdom), 2013, 15, 035406 Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38, 136-8 A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb. Optics Communications, 2012, 285, 2311-2315 Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Physical Review Letters, 2012, 109, 223903 A Continuously Tunable Microwave Fractional Hilbert Transformer Based on a Nonuniformly Spaced Photonic Microwave Delay-Line Filter. Journal of Lightwave Technology, 2012, Novel Demodulation Method for Fiber-Optic Interferometers Based on Spi/25 Phase Modulation. IEEE Photonics Technology Letters, 2012, 24, 1981-1983 A frequency-doubling optoelectronic oscillator based on phase modulator 2012, A Wideband Frequency-Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBG and Wavelength Tuning of Laser. IEEE Photonics Technology Letters, 2012, 24, 1115-1117 Photonic analog-to-digital converter based on the robust symmetrical number system. Optics Communications, 2012, 285, 4966-4970 Pour-tap	A Tunable Optoelectronic Oscillator Based on a Dispersion-Induced Microwave Photonic Filter. IEEE Photonics Technology, Letters, 2013, 25, 921-924 All-optical modulator with long range surface plasmon resonance. Optics and Laser Technology, 2013, 49, 316-319 Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions. Optics Communications, 2013, 292, 53-56 Electro-optic modulator feedback control in phase-sensitive optical time-domain reflectometer distributed sensor. Applied Optics, 2013, 52, 8581-5 Highly efficient photonic-crystal splitters based on one-way waveguiding. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 173 An electrically tunable frequency-doubling optoelectronic oscillator with operation based on stimulated Brillouin scattering. Journal of Optics (United Kingdom), 2013, 15, 035406 17 A Reconfigurable Microwave Photonic Channelized Receiver Based on Dense Wavelength Division Multiplexing Using an Optical Comb. Optics Communications, 2012, 285, 2311-2315 Experimental demonstration of a free-space cylindrical cloak without superluminal propagation. Physical Review Letters, 2012, 109, 223903 A Continuously Tunable Microwave Practional Hilbert Transformer Based on a Nonuniformly Spaced Photonic Microwave Delay-Line Filter. Journal of Lightwave Technology, 2012, Novel Demodulation Method for Fiber-Optic Interferometers Based on \$\forall \text{Physical Review Letters}, 2012, 24, 1981-1983} A frequency-doubling optoelectronic oscillator based on phase modulator 2012, A Wideband Frequency-Tunable Optoelectronic Oscillator Based on a Narrowband Phase-Shifted FBC and Wavelength Tuning of Laser. IEEE Photonics Technology Letters, 2012, 24, 1981-1983 A frequency-doubling optoelectronic oscillator based on phase modulator 2012, 1

103	Cross-Layer Power Allocation for Packet Transmission Over Fading Channel. <i>Wireless Personal Communications</i> , 2012 , 65, 617-642	1.9	1
102	Microwave spectral analysis based on photonic compressive sampling with random demodulation. <i>Optics Letters</i> , 2012 , 37, 4636-8	3	35
101	Electro-optically tunable microwave source based on composite-cavity microchip laser. <i>Optics Express</i> , 2012 , 20, 29090-5	3.3	12
100	Refractive index sensor based on tilted fiber Bragg grating and stimulated Brillouin scattering. <i>Optics Express</i> , 2012 , 20, 10853-8	3.3	13
99	Quadratic electro-optic properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 transparent ceramics under both DC and AC bias. <i>Applied Optics</i> , 2012 , 51, 2870-6	1.7	
98	Optically Tunable Frequency-Doubling Brillouin Optoelectronic Oscillator With Carrier Phase-Shifted Double Sideband Modulation. <i>IEEE Photonics Technology Letters</i> , 2012 , 24, 1051-1053	2.2	64
97	Optical Single-Sideband Modulation Using a Fiber-Bragg-Grating-Based Optical Hilbert Transformer. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 558-560	2.2	42
96	A wideband electro-optic modulator based on long range surface plasmon resonances. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 125001	1.7	3
95	Any bias point control of mach-zehnder electrooptic modulator and its applications in optimization of radio-over-fiber links 2011 ,		3
94	A microwave photonic scheme for improving the sensitivity of Mach-Zehnder optical fiber interferometer sensor 2011 ,		1
93	A reconfigurable photonic microwave channelized receiver based on an optical comb 2011,		3
92	Differentially Encoded Photonic Analog-to-Digital Conversion Based on Phase Modulation and Interferometric Demodulation. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1890-1892	2.2	5
91	Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating. <i>IEEE Microwave and Wireless Components Letters</i> , 2011 , 21, 52-54	2.6	39
90	Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers. <i>Optics Letters</i> , 2011 , 36, 1629-31	3	18
89	Photonic approach for microwave spectral analysis based on Fourier cosine transform. <i>Optics Letters</i> , 2011 , 36, 3897-9	3	10
88	Frequency response equalization in phase modulated RoF systems using optical carrier Brillouin processing. <i>Frontiers of Optoelectronics in China</i> , 2011 , 4, 277-281		
87	Optical generation of microwave/millimeter-wave based on Brillouin-Erbium fiber laser. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1761-1763	1.2	4
86	Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization-Maintaining Fiber Bragg Grating. <i>IEEE Microwave and Wireless Components Letters</i> , 2011 , 21, 694-696	2.6	57

85	. IEEE Photonics Technology Letters, 2011 , 23, 1694-1696	2.2	13
84	Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 712-714	2.2	74
83	Photonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversions. <i>Optics Communications</i> , 2011 , 284, 3928-3932	2	11
82	Photonic crystal cavity with one-way rotating state and its coupling with photonic crystal waveguide. <i>Journal of Applied Physics</i> , 2011 , 110, 043106	2.5	15
81	CLOAKING A PERFECTLY CONDUCTING SPHERE WITH ROTATIONALLY UNIAXIAL NIHILITY MEDIA IN MONOSTATIC RADAR SYSTEM. <i>Progress in Electromagnetics Research</i> , 2010 , 100, 285-298	3.8	27
80	Ultra-Wideband Bandpass Filter with Notched Band Based on Electrooptic Phase Modulator and Phase-Shift Fiber Bragg Grating. <i>Journal of Electromagnetic Waves and Applications</i> , 2010 , 24, 795-802	1.3	10
79	Performances improvement in radio over fiber link through carrier suppression using Stimulated Brillouin scattering. <i>Optics Express</i> , 2010 , 18, 11827-37	3.3	17
78	Pulse Distortions Due to Third-Order Dispersion and Dispersion Mismatches in a Phase-Modulator-Based Temporal Pulse Shaping System. <i>Journal of Lightwave Technology</i> , 2010 , 28, 2865-2872	4	1
77	Performance Improvement of Phase Modulation with Interferometric Detection Through Low-biasing. <i>Journal of Electromagnetic Waves and Applications</i> , 2010 , 24, 123-132	1.3	10
76	Optical variable gain tilt filter with temperature compensation. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1906-1909	1.2	1
75	Tunable fiber fabry-perot filter for PM-IM conversion and efficiency improvement in radio-over-fiber links. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 2090-2095	1.2	5
74	Tunable frequency equalization using variable optical tilt filter in radio-over-fiber links. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 2456-2459	1.2	Ο
73	Photonic instantaneous measurement of microwave frequency using fiber Bragg grating. <i>Optics Communications</i> , 2010 , 283, 396-399	2	35
72	Simultaneously Realizing PM-IM Conversion and Efficiency Improvement of Fiber-Optic Links Using FBG. <i>Journal of Electromagnetic Waves and Applications</i> , 2009 , 23, 161-170	1.3	12
71	A novel control scheme for four-plate retardation polarization controller. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 124-128	1.2	2
70	Photonic analog-to-digital conversion using multiple comparators and Mach-Zehnder modulators with identical half-wave voltages. <i>Optics Communications</i> , 2009 , 282, 504-507	2	4
69	Photonic analog-to-digital converter using Mach-Zehnder modulators having identical half-wave voltages with improved bit resolution. <i>Applied Optics</i> , 2009 , 48, 4458-67	0.2	15
68	Frequency Response Equalization Using Fiber Bragg Grating Tilted Filter in RoF Systems. <i>Journal of Lightwave Technology</i> , 2009 , 27, 2465-2469	4	4

67	Instantaneous Microwave Frequency Measurement Using an Optical Phase Modulator. <i>IEEE Microwave and Wireless Components Letters</i> , 2009 , 19, 422-424	2.6	62
66	An Optical Millimeter-Wave Generation Technique Based on Phase Modulation and Brillouin-Assisted Notch-Filtering. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 2057-2059	2.2	15
65	Large-Scale Fabrication of Pr3+Doped or Undoped Nanosized ATiO3(A= Ca, Sr, Ba) with Different Shapes via a Facile Solvothermal Technique. <i>Crystal Growth and Design</i> , 2008 , 8, 779-781	3.5	15
64	MICROWAVE/MILLIMETER-WAVE GENERATION USING MULTI-WAVELENGTH PHOTONIC CRYSTAL FIBER BRILLOUIN LASER. <i>Progress in Electromagnetics Research</i> , 2008 , 80, 307-320	3.8	33
63	All-optical generation of microwave using a photonic crystal fiber Brillouin laser based on Bragg grating Fabry-Perot cavity. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 809-814	1.2	5
62	Two-dimensional mapping of electro-optic phase retardation in PLZT by digital holography. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 3093-3097	1.2	
61	Reconfigurable microwave photonic transversal filter using a variable gain tilt filter. <i>Optics Communications</i> , 2008 , 281, 998-1002	2	4
60	A novel wavelength shift keying transmitter using a pair of Machlehnder modulators. <i>Optics Communications</i> , 2008 , 281, 2517-2521	2	1
59	Optimized electrode structure for a high-Q electro-optic microdisk-based optical phase modulator. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 313-316	1.2	3
58	TUNABLE FIBER FABRY-PEROT FILTER FOR OPTICAL CARRIER-SUPPRESSION AND SINGLE-SIDEBAND MODULATION IN RADIO OVER FIBER LINKS. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2007 , 27, 381-390		
57	A Hybrid Radio Over Fiber Wireless Sensor Network Architecture 2007,		5
56	Size Manipulated Photoluminescence and Phosphorescence in CaTiO3:Pr3+Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18044-18048	3.8	37
55	Noise reduction using photonic microwave filter for radio over fiber system. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 305-307	1.2	6
54	Analysis of the effects of mode coupling on the bandwidth characteristics of step-index plastic optical fiber. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 432-435	1.2	10
53	Digitally controlled programmable high-speed variable optical attenuator. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 1019-1021	1.2	2
52	Optical steering of a phased-array antenna based on fast delay-line switches. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 1449-1452	1.2	3
51	Investigation on spectra of prism-coupled microdisk resonator. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 1265-1269	1.2	
50	Comparison of polarization-mode dispersion tolerances in polarization-multiplexing systems with different modulation formats. <i>Optics Communications</i> , 2006 , 259, 640-644	2	3

(2005-2006)

49	Characteristics of radio transmission over polymer optical fiber for indoor wireless coverage. <i>Optics Communications</i> , 2006 , 264, 142-147	2	3
48	Transport of Glucose and Poly(ethylene glycol)s in Agarose Gels Studied by the Refractive Index Method. <i>Macromolecules</i> , 2005 , 38, 5236-5242	5.5	31
47	All-optical generation of microwave and Millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser. <i>Journal of Lightwave Technology</i> , 2005 , 23, 1860-1865	4	45
46	Optical single sideband Modulation of 11-GHz RoF system using stimulated Brillouin scattering. <i>IEEE Photonics Technology Letters</i> , 2005 , 17, 1277-1279	2.2	70
45	A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonics signals 2005 ,		2
44	Microwave photonic signals conversion using stimulated Brillouin scattering. <i>Optics Communications</i> , 2005 , 249, 109-115	2	7
43	Polarization insensitive coherent detection for Brillouin scattering spectrum in BOTDR. <i>Optics Communications</i> , 2005 , 254, 168-172	2	6
42	Negative refraction of a combined double S-shaped metamaterial. <i>Applied Physics Letters</i> , 2005 , 86, 15	19,029	84
41	Photonic microwave transversal filter employing a fiber-Bragg-grating-based multiple resonator. <i>Microwave and Optical Technology Letters</i> , 2005 , 44, 369-371	1.2	6
40	A flexible and incoherent microwave photonic filter with a flat-top passband. <i>Microwave and Optical Technology Letters</i> , 2005 , 46, 132-134	1.2	
39	Simultaneous realization of optical carrier-suppression and SSB modulation in wireless fiber links using fiber Bragg grating. <i>Microwave and Optical Technology Letters</i> , 2005 , 46, 336-339	1.2	8
38	Experimental Investigation on the Effect of Optical Source on Photonic Microwave Filter Performance. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2005 , 26, 763-770		
37	Transmission Performance Improvement in Microwave/Millimeter-Wave Optical System Using Chirped Fiber Grating. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2005 , 26, 1005-1016		1
36	Tunable All-Optical Microwave Filters Based on Fiber Loop and Chirped Fiber Bragg Gratings. Journal of Infrared, Millimeter and Terahertz Waves, 2005 , 26, 1207-1215		
35	Integrated Electro-Absorption Modulation DFB Laser Based Optical True Time-Delay Feeder for X-Band Phased Array Antennas. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2005 , 26, 1465-147	'2	
34	MAGNETIC PROPERTIES OF S-SHAPED SPLIT-RING RESONATORS. <i>Progress in Electromagnetics Research</i> , 2005 , 51, 231-247	3.8	58
33	. IEEE Transactions on Microwave Theory and Techniques, 2005 , 53, 1522-1526	4.1	20
32	Two-Frequency Brillouin Fiber Laser Based on Bragg Grating Fabry-Perot Cavity. <i>Fiber and Integrated Optics</i> , 2005 , 24, 83-90	0.8	3

31	Stimulated Brillouin scattering for efficient improvement of radio-over-fiber systems. <i>Optical Engineering</i> , 2005 , 44, 105003	1.1	4
30	Beam shifting experiment for the characterization of left-handed properties. <i>Journal of Applied Physics</i> , 2004 , 95, 2238-2241	2.5	26
29	Metamaterial exhibiting left-handed properties over multiple frequency bands. <i>Journal of Applied Physics</i> , 2004 , 96, 5338-5340	2.5	79
28	Left-handed materials composed of only S-shaped resonators. <i>Physical Review E</i> , 2004 , 70, 057605	2.4	285
27	FIR Photonic Microwave Filter Design Employing Simulated Annealing Algorithm. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2004 , 25, 1757-1764		1
26	Microwave Photonic Signal Down-Conversion Using a Novel Two-Frequency Bragg Grating Based Brillouin Fiber Laser. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2004 , 25, 1805-1809		O
25	A novel tunable fiber-optic microwave notch filter using fiber loop and cascaded fiber Bragg gratings. <i>Microwave and Optical Technology Letters</i> , 2004 , 41, 386-388	1.2	6
24	Optical carrier-suppression of microwave signals with stimulated Brillouin scattering in long fiber ring. <i>Microwave and Optical Technology Letters</i> , 2004 , 43, 258-260	1.2	7
23	Degree of polarization technique used in PMD compensation of optical microwave transmission systems. <i>Optics Communications</i> , 2004 , 236, 109-114	2	2
22	In situ investigation of drug diffusion in hydrogels by the refractive index method. <i>Analytical Chemistry</i> , 2004 , 76, 2807-12	7.8	5
21	Experimental confirmation of negative refractive index of a metamaterial composed of Elike metallic patterns. <i>Applied Physics Letters</i> , 2004 , 84, 1537-1539	3.4	189
20	Left-handed metamaterial and its experimental verifications. <i>Science Bulletin</i> , 2003 , 48, 1325-1327		1
19	Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating. <i>Sensors and Actuators B: Chemical</i> , 2003 , 96, 468-472	8.5	67
18	T-junction waveguide experiment to characterize left-handed properties of metamaterials. <i>Journal of Applied Physics</i> , 2003 , 94, 3712-3716	2.5	17
17	Investigation into Molecular Diffusion in Hydrogels Using the Refractive Index Method. <i>Macromolecular Rapid Communications</i> , 2002 , 23, 968-971	4.8	3
16	In situ monitoring gelation process of N,N-dimethylacrylamide by refractive index technique. <i>Polymer</i> , 2002 , 43, 6761-6765	3.9	12
15	Fiber optic Bragg grating sensor based on hydrogels for measuring salinity. <i>Sensors and Actuators B: Chemical</i> , 2002 , 87, 487-490	8.5	88
14	A novel high photoluminescence efficiency polymer incorporated with pendant europium complexes. <i>Polymer</i> , 2001 , 42, 4605-4610	3.9	57

LIST OF PUBLICATIONS

13	Spectra of dual overwritten fiber Bragg grating. <i>Optics Communications</i> , 2001 , 188, 31-39	2	18	
12	Heterogeneous Polymerization of Hydrogels on Hydrophobic Substrate. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4565-4571	3.4	48	
11	Investigation of the gelation process by in-situ interferometry. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 998-1001	4.8	3	
10	In Situ Monitoring of Hydrogel Polymerization Using Speckle Interferometry. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 2888-2891	3.4	21	
9	Light-Emitting Substituted Polyacetylenes. Japanese Journal of Applied Physics, 1999, 38, 2017-2023	1.4	23	
8	Investigation of Molecular Diffusion in Hydrogel by Electronic Speckle Pattern Interferometry. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 6069-6074	3.4	35	
7	Electroluminescent Devices Based on Poly(diphenylacetylene) with Carbazolyl Side Groups. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L1508-L1510	1.4	3	
6	Optical wavelet-matched filtering with bacteriorhodopsin films. <i>Applied Optics</i> , 1997 , 36, 8413-6	1.7	11	
5	Temperature-dependent electroluminescence from (Eu, Gd) coordination complexes. <i>Applied Physics Letters</i> , 1997 , 71, 2596-2598	3.4	50	
4	Equivalent network approach for a general nonlinear planar optical waveguide. <i>Optics Communications</i> , 1996 , 128, 15-18	2		
3	Three-dimensional degenerate multiwave mixing and optical storage effects in C60 Langmuir-Blodgett films. <i>Optics Communications</i> , 1995 , 113, 519-522	2	3	
2	Multiple forward phase conjugate waves by degenerate four-wave-mixing in Langmuir-Blodgett films with BOXCARS geometry. <i>Optics Communications</i> , 1991 , 86, 428-430	2	3	
1	Bragg grating assisted coupler for add-drop filter		4	