Erik de Blois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710651/publications.pdf Version: 2024-02-01

FDIN DE RIOIS

#	Article	IF	CITATIONS
1	Improved Multimodal Tumor Necrosis Imaging with IRDye800CW-DOTA Conjugated to an Albumin-Binding Domain. Cancers, 2022, 14, 861.	3.7	0
2	In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. European Journal of Nuclear Medicine and Molecular Imaging, 2022, , 1.	6.4	12
3	Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. Journal of Nuclear Cardiology, 2021, 28, 2506-2513.	2.1	12
4	Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1339-1350.	6.4	42
5	Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Research, 2021, 11, 27.	2.5	7
6	GRPr Antagonist ⁶⁸ Ga-SB3 PET/CT Imaging of Primary Prostate Cancer in Therapy-NaÃ⁻ve Patients. Journal of Nuclear Medicine, 2021, 62, 1517-1523.	5.0	17
7	Development of [225Ac]Ac-PSMA-I&T for Targeted Alpha Therapy According to GMP Guidelines for Treatment of mCRPC. Pharmaceutics, 2021, 13, 715.	4.5	28
8	In Vivo Evaluation of Gallium-68-Labeled IRDye800CW as a Necrosis Avid Contrast Agent in Solid Tumors. Contrast Media and Molecular Imaging, 2021, 2021, 1-8.	0.8	3
9	In Vivo Evaluation of Indium-111–Labeled 800CW as a Necrosis-Avid Contrast Agent. Molecular Imaging and Biology, 2020, 22, 1333-1341.	2.6	6
10	Imaging of inflammatory cellular protagonists in human atherosclerosis: a dual-isotope SPECT approach. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2856-2865.	6.4	5
11	Maintaining radiochemical purity of [177Lu]Lu-DOTA-PSMA-617 for PRRT by reducing radiolysis. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321, 285-291.	1.5	20
12	Radiochemical and analytical aspects of inter-institutional quality control measurements on radiopharmaceuticals. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 3.	3.9	15
13	In Vivo Stabilized SB3, an Attractive GRPR Antagonist, for Pre- and Intra-Operative Imaging for Prostate Cancer. Molecular Imaging and Biology, 2018, 20, 973-983.	2.6	13
14	Semi-automated system for concentrating 68Ga-eluate to obtain high molar and volume concentration of 68Ga-Radiopharmaca for preclinical applications. Nuclear Medicine and Biology, 2018, 64-65, 16-21.	0.6	6
15	SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?. Journal of Nuclear Medicine, 2017, 58, 1609-1614.	5.0	21
16	Optimizing labelling conditions of 213Bi-DOTATATE for preclinical applications of peptide receptor targeted alpha therapy. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 9.	3.9	18
17	⁶⁸ Ga/ ¹⁷⁷ Lu-NeoBOMB1, a Novel Radiolabeled GRPR Antagonist for Theranostic Use in Oncology. Journal of Nuclear Medicine, 2017, 58, 293-299.	5.0	98
18	In Vitro comparison of 213Bi- and 177Lu-radiation for peptide receptor radionuclide therapy. PLoS ONE, 2017, 12, e0181473.	2.5	37

Erik de Blois

#	Article	IF	CITATIONS
19	In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics, 2016, 6, 104-117.	10.0	53
20	Evaluation of a Fluorescent and Radiolabeled Hybrid Somatostatin Analog In Vitro and in Mice Bearing H69 Neuroendocrine Xenografts. Journal of Nuclear Medicine, 2016, 57, 1289-1295.	5.0	20
21	Influence of tumour size on the efficacy of targeted alpha therapy with 213Bi-[DOTA0,Tyr3]-octreotate. EJNMMI Research, 2016, 6, 6.	2.5	31
22	Improved safety and efficacy of 213Bi-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with I-lysine. EJNMMI Research, 2016, 6, 83.	2.5	53
23	Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts. Journal of Nuclear Medicine, 2016, 57, 601-607.	5.0	37
24	Comparison of the Therapeutic Response to Treatment with a ¹⁷⁷ Lu-Labeled Somatostatin Receptor Agonist and Antagonist in Preclinical Models. Journal of Nuclear Medicine, 2016, 57, 260-265.	5.0	102
25	In Vitro and In Vivo Application of Radiolabeled Gastrin-Releasing Peptide Receptor Ligands in Breast Cancer. Journal of Nuclear Medicine, 2015, 56, 752-757.	5.0	49
26	Determination of peptide content and purity of DOTA-peptides by metal ion titration and UPLC: an alternative method to monitor quality of DOTA-peptides. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 825-830.	1.5	6
27	Preclinical Comparison of Al ¹⁸ F- and ⁶⁸ Ga-Labeled Gastrin-Releasing Peptide Receptor Antagonists for PET Imaging of Prostate Cancer. Journal of Nuclear Medicine, 2014, 55, 2050-2056.	5.0	46
28	Application of single-vial ready-for-use formulation of 1111n- or 177Lu-labelled somatostatin analogs. Applied Radiation and Isotopes, 2014, 85, 28-33.	1.5	29
29	Iodination and Stability of Somatostatin Analogues: Comparison of Iodination Techniques. A Practical Overview. Current Topics in Medicinal Chemistry, 2013, 12, 2668-2676.	2.1	12
30	Effectiveness of Quenchers to Reduce Radiolysis of 1111n- or 177Lu-Labelled Methionine-Containing Regulatory Peptides. Maintaining Radiochemical Purity as Measured by HPLC. Current Topics in Medicinal Chemistry, 2013, 12, 2677-2685.	2.1	41
31	Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288, 303-306.	1.5	2
32	Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Applied Radiation and Isotopes, 2011, 69, 308-315.	1.5	88
33	Radiolabelling DOTA-peptides with 68Ga. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 478-485.	6.4	248